TMI8263R Dual H-Bridge Motor Driver #### **FEATURES** - . 8-V to 45-V Operating Supply Voltage Range - High Output Current Capability -2.5-A DC. 2.8-A Peak at 24 V and TA = 25°C - Dual H-Bridge Motor Driver - Single and Dual Brushed DC - Stepper - . Multiple Decay Modes - Mixed Decay - Slow Decay - Fast Decay - Low Current Sleep Mode Built-In 3.3-V Reference Output - . Protection Features - Overcurrent Protection (OCP) - Thermal Shutdown (TSD) - VM Undervoltage Lockout (UVLO) - Fault Condition Indication Pin (nFAULT) - Small Packages - HTSSOP28 #### **APPLICATIONS** - Office Automatic Machines - Printers and Scanners - Robotics - . Gaming Machines - Factory Automation #### **GENERAL DESCRIPTION** The TMI8263R provides an integrated motor driver solution for printers, scanners, and other automated equipment applications. The device has two H-bridge drivers, and can drive a bipolar stepper motor or two brushed DC motors. The output driver block consists of N-channel power MOSFETs configured as H-bridges. A simple PWM interface allows easy interfacing to controller circuits. The TMI8263R is capable of driving up to 2.8-A peak output current per H-bridge. A low-power sleep mode is provided to achieve ultra- low quiescent current draw by shutting down most of the internal circuitry. Internal protection features are provided for over current, undervoltage and over temperature. Fault conditions are indicated on nFAULT. The TMI8263R which comply with ROHS specifications, and the lead frame is 100% lead-free. ### TYPICAL APPILCATION Figure 1. Basic Application Circuit # ABSOLUTE MAXIMUM RATINGS (Note 1) | Parameter | Min | Max | Unit | |---|------|-----|------| | Power supply voltage (VM) | -0.3 | 48 | V | | Power supply ramp rate (VMx) | | 1 | V/µs | | Digital pin voltage | -0.3 | 7 | V | | Reference input pin voltage (VREF) | -0.3 | 4 | V | | Continuous motor drive output current | 0 | 2.5 | А | | Operating ambient temperature, T _A | -40 | 85 | °C | | Operating virtual junction temperature, T _{J (Note 2)} | -40 | 150 | °C | | Storage temperature T _{stg} | -60 | 150 | °C | ### **ESD RATING** | Items | Description | Value | Unit | |------------------|----------------------------|-------|------| | V | Human body model | ±2000 | V | | V _{ESD} | Charged device model (CDM) | ±750 | V | ## **JEDEC specification JS-001** #### PACKAGE/ORDER INFORMATION HTSSOP28(Top view) ### TMI8263R/XXXXX (TMI8263R: Device Code, XXXXX: Inside Code) for TMI8263R | Part Number | Package | Top mark | Quantity/ Reel | |-------------|----------|----------|----------------| | TMI8263R | HTSSOP28 | TMI8263R | 4500 | | | | XXXXX | | The TMI8263R device is Pb-free and RoHS compliant. # **PIN FUNCTIONS** | | PIN | | F 45 | | | |--------|------------|--------------------|--|--|---| | Number | Name | I/O ⁽¹⁾ | Function | | | | 14、28 | GND | - | Device ground. | | | | 4 | \/\/\ | | Bridge A power supply. Connect a 0.1µF bypass capacitor to | | | | 4 | VMA | - | ground, as well as a sufficient bulk capacitance rated for VM. | | | | 11 | VMB | _ | Bridge B power supply. Connect a 0.1µF bypass capacitor to | | | | 11 | VIVID | _ | ground, as well as a sufficient bulk capacitance rated for VM. | | | | 15 | V3P3OU | 0 | 3.3V regulator output. Bypass to GND with a 0.47-µF 6.3-V | | | | | T | | ceramic capacitor. | | | | 1 | CP1 | IO | Charge pump flying capacitor. Connect a 0.01-µF 50-V capacitor | | | | 2 | CP2 | 10 | between | | | | | | | CP2 2 CP1 and CP2. | | | | 3 | VCP | 10 | High-side gate drive voltage. Connect a $0.1\mu F$ ceramic capacitor and $1-M\Omega$ resistor to VM. | | | | | | | Bridge A input 1. Logic input controls state of AOUT1. Internal | | | | 21 | AIN1 | I | pulldown. | | | | | | | Bridge A input 2. Logic input controls state of AOUT2. Internal | | | | 20 | AIN2 | I | pulldown. | | | | 24 | AI0 | ı | Bridge A current set. Sets bridge A current: 00 = 100%, | | | | 25 | Al1 | I | 01 = 71%, 10 = 38%, 11 = 0. Internal pulldown. | | | | 22 | DINIA | | Bridge B input 1. Logic input controls state of BOUT1. Internal | | | | 22 | 22 BIN1 I | | pulldown. | | | | 23 | 23 RINI2 I | | 23 BIN2 I | | Bridge B input 2. Logic input controls state of BOUT2. Internal | | | Dii 12 | ' | pulldown. | | | | 26 | BI0 | I | Bridge B current set. Sets bridge B current: 00 = 100%, | | | | 27 | BI1 | ı | 01 = 71%, 10 = 38%, 11 = 0. Internal pulldown. | | | | 19 | DECAY | | Decay mode. Low = slow decay, open = mixed decay, high = fast | | | | | | | decay. Internal pulldown and pullup. | | | | 16 | nRESET | ı | Reset input. Active-low reset input initializes internal logic and | | | | | | | disables the H-bridge outputs. Internal pulldown. | | | | 17 | nSLEEP | I | Sleep mode input. Logic high to enable device, logic low to enter | | | | 10 | A)/DEE | 1 | low-power sleep mode. Internal pulldown. | | | | 12 | AVREF | l | Bridge A current set reference input. | | | | 13 | BVREF | l | Bridge B current set reference input. | | | | 18 | nFAULT | OD | Fault. Logic low when in fault condition (overtemperature, overcurrent). | | | | 5 | AOUT1 | 0 | Bridge A output 1. | | | | 7 | AOUT2 | 0 | Bridge A output 1. Bridge A output 2. | | | | 10 | BOUT1 | 0 | Bridge B output 1. | | | | 10 | ВООТТ | | Driage D output 1. | | | www.toll-semi.com TMI8263R V1.0 2023 # PIN FUNCTIONS_(Continued) | | PIN | | Eunotion | | | | |---------|------------|--------------------|---|--|--|--| | Number | Name | I/O ⁽¹⁾ | Function | | | | | 8 | BOUT2 | 0 | Bridge B output 2. | | | | | 6 | 6 ISENA IO | | Bridge A ground / Isense. Connect to current sense resistor for | | | | | U | | | bridge A. | | | | | 0 | ICENID | 10 | Bridge B ground / Isense. Connect to current sense resistor for | | | | | 9 ISENB | | Ю | bridge B. | | | | ⁽¹⁾ Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output ## **RECOMMENDED OPERATING CONDITIONS** | Items | Description | Min | Max | Unit | |------------------|----------------------------------|-----|-----|------| | VM | Power supply voltage range | 8.0 | 45 | V | | VREF | VREF input voltage | 1 | 3.5 | V | | IV3P3 | V3P3OUT load current | | 10 | mA | | f _{PWM} | Externally applied PWM frequency | 0 | 100 | kHz | ⁽¹⁾ All VM pins must be connected to the same supply voltage. ⁽²⁾ Operational at VREF between 0V and 1V, but accuracy is degraded. ## **ELECTRICAL CHARACTERISTICS** $T_A = 25$ °C, over recommended operating conditions (unless otherwise noted) | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |---------------------------------|----------------------|---|------|------|------|------| | POWER SUPPLY | | | | | | | | VM operating supply current | I _{VM} | VM = 24 V, f _{PWM} < 50 kHz | | 3 | 5 | mA | | VM sleep mode supply current | I _{VMQ} | VM = 24V | | 1 | 10 | μA | | VM undervoltage lockout voltage | V _{UVLO} | VM rising | | 6 | 8 | V | | Vodocut | V _{3P3} | IOUT = 0 to 1 mA, VM = 24 V,
T _J = 25°C | 3.18 | 3.30 | 3.40 | V | | V3P3OUT voltage | | IOUT = 0 to 1 mA | 3.10 | 3.30 | 3.50 | V | | | V _{3P3UVLO} | | | 2 | | V | | LOGIC-LEVEL INPUTS | | | | | | | | Input low voltage | V _{IL} | | | 0.7 | 0.8 | V | | Input high voltage | V _{IH} | | 1.8 | | 5.25 | V | | Input hysteresis | V _{HYS} | | | 0.45 | | V | | Input low current | I _{IL} | VIN = 0V | -20 | | 20 | μA | | Input high current | I _{IH} | VIN = 3.3V | | 35 | 50 | μA | | Pulldown resistance | R _{PD} | | | 100 | | kΩ | | nFAULT OUTPUT (OPEN-I | DRAIN OUTI | PUT) | | | | | | output low voltage | V _{OL} | I _O = 5 mA | | | 0.5 | V | | output high leakage current | Іон | V _O = 3.3 V | | | 1 | μA | | DECAY INPUT | | | | | | | | Input low threshold voltage | V _{IL} | For slow decay mode | 0 | | 1.0 | V | | Input high threshold voltage | V _{IH} | For fast decay mode | 2.0 | | | V | | Input current | | Decay = 5V | | | ±45 | μA | | Pullup resistance | R _{PU} | | | 130 | | kΩ | | Pulldown resistance | R _{PD} | | | 80 | | kΩ | | H-BRIDGE FETS | | | | | | | | HS FET on resistance | R _{DS(ON)} | VM = 24 V, I _O = 1 A | | 0.2 | | Ω | | LS FET on resistance | R _{DS(ON)} | VM = 24 V, I _O = 1 A | | 0.2 | | Ω | | Off-state leakage current | loff | | -5 | | 5 | μA | | MOTOR DRIVER | | | | | | | | Internal PWM frequency | f _{PWM} | | | 40 | | kHz | | Current sense blanking time | tBLANK | | | 3.75 | | μs | | Rise time | t _R | VM = 24 V | 30 | | 200 | ns | | Fall time | t _F | VM = 24 V | 30 | | 200 | ns | | Dead time | t _{DEAD} | | | 20 | | ns | | Input deglitch time | t _{DEG} | | 1.7 | | 2.5 | μs | www.toll-semi.com TMI8263R V1.0 2023 5 # **ELECTRICAL CHARACTERISTICS** (Continued) T_A = 25°C, over recommended operating conditions (unless otherwise noted) | 14 20 0, over recommended operating contained (amount of necess) | | | | | | | | | | |--|-------------------------|---|-----|-----|-----|------|--|--|--| | PARAMETER | SYMBOL | TEST CONDITIONS | MIN | TYP | MAX | UNIT | | | | | CURRENT CONTROL | | | | | | | | | | | xVREF input current | I _{REF} | xVREF = 3.3 V | -3 | | 3 | μA | | | | | | V | $xVREF = 3.3 V$, $I_{SENSE} = 0.5 Ω$, | 630 | 660 | 690 | m\/ | | | | | | V _{TRIP} | 100% current setting | 630 | 660 | 680 | mV | | | | | xISENSE trip voltage | | $xVREF = 3.3 V$, $I_{SENSE} = 0.5 Ω$, | 445 | 468 | 480 | mV | | | | | | | 71% current setting | 443 | | | 1117 | | | | | | | $xVREF = 3.3 V$, $I_{SENSE} = 0.5 Ω$, | 230 | 251 | 265 | mV | | | | | | | 38% current setting | 230 | 251 | 200 | IIIV | | | | | Current sense amplifier gain | Aisense | Reference only | | 5 | | V/V | | | | | PROTECTION CIRCUITS | | | | | | | | | | | Overcurrent protection trip level | locp | | | 4.5 | | Α | | | | | Thermal shutdown temperature | T _{SD (Note3)} | | 150 | 170 | 180 | °C | | | | Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + P_D \times \theta_{JA}$. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $P_{D \text{ (MAX)}} = (T_{J(MAX)} - T_A)/\theta_{JA}$. Note 3: Thermal shutdown threshold and hysteresis are guaranteed by design. #### **OPERATION** #### Overview The TMI8263R is an integrated motor driver solution for a bipolar stepper motor or two brushed DC motors. The device integrates two NMOS H-bridges, current sense, regulation circuitry, and detailed fault detection. The TMI8263R can be powered with a supply voltage between 8 V and 45 V and is capable of providing an output current up to 2.5A full-scale. A PWM interface allows for easy interfacing to the controller circuit. The winding current control allows the external controller to adjust the regulated current that is provided to the motor. The current regulation is highly configurable, with three decay modes of operation. Fast, slow, and mixed decay can be selected depending on the application requirements. A low-power sleep mode is included which allows the system to save power when not driving the motor. A variety of integrated protection features protect the device in the case of a system fault. These include undervoltage lockout (UVLO), charge pump undervoltage (CPUV), overcurrent protection (OCP), and overtemperature shutdown (TSD). Fault conditions are indicated on the nFAULT pin. #### **Control Modes** The AIN1 and AIN2 input pins directly control the state of the AOUT1 and AOUT2 outputs; similarly, the BIN1 and BIN2 input pins directly control the state of the BOUT1 and BOUT2 outputs. The logic is shown in Table 1. xOUT1 xIN1 xIN2 xOUT2 0 0 Н 0 1 L 1 0 Η L 1 1 Н Н **Table 1. H-Bridge Control Logic** The control inputs have internal pulldown resistors of approximately 100 k Ω . #### **Current Regulation** In TMI8263R, motor peak current can be limited by the analog reference input VREF and the resistance of external sense resistor on the SENSEx pin approximately according to the below equation: $$I_{CHOP}(A) = \frac{V_{REF}(V)}{A_{V} \times R_{ISEN}(\Omega)} = \frac{V_{REF}(V)}{5 \times R_{ISEN}(\Omega)}$$ For example: If VREF = 3.3 V and a R_{ISEN} = 0.5 Ω , the TMI8263R full-scale (100%) chopping current will be 1.32A; The two input pins (xl1 and xl0) of each H-bridge are set high and low signals; the current in each bridge is scaled to the corresponding percentage of the full-scale current set by the VREF input pin and the sense resistor. The function of the pin is shown in Table 2. | xl1 | xI0 | RELATIVE CURRENT | | | | | | |-----|-----|---------------------------------|--|--|--|--|--| | XII | XIU | (% FULL-SCALE CHOPPING CURRENT) | | | | | | | 1 | 1 | 0% | | | | | | | 1 | 0 | 38% | | | | | | | 0 | 1 | 71% | | | | | | | 0 | 0 | 100% | | | | | | Table 2. H-Bridge xI0,xI1 Pin Functions #### For example: If VREF = 3.3 V and a R_{ISEN} = 0.5 Ω , When the current is set to 100% (xI1, xI0 = 00), the chopping current will be 1.32 A; When the current is set to 71% (xI1, xI0 = 01), the chopping current will be1.32 A x 71% =0.937A; andWhen the current is set to 38% (xI1, xI0 = 10), the chopping current will be1.32 A x 38% =0.502A; If (xI1, xI0 = 11) the bridge will be disabled and no current will flow. #### **Decay Mode** During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached. This is shown in Figure 2 as case 1. The current flow direction shown indicates the state when the xENBL pin is high. Once the chopping current threshold is reached, the H-bridge can operate in two different states, fast decay or slow decay. In fast decay mode, once the PWM chopping current level has been reached, the H-bridge reverses state to allow winding current to flow in a reverse direction. As the winding current approaches zero, the bridge is disabled to prevent any reverse current flow. Fast decay mode is shown in Figure 2 as case 2. In slow decay mode, winding current is re-circulated by enabling both of the low-side FETs in the bridge. This is shown in Figure 2 as case 3. Figure 2. Decay Mode The TMI8263R supports fast decay, slow decay and a mixed decay mode. Slow, fast, or mixed decay mode is selected by the state of the DECAY pin - logic low selects slow decay, open selects mixed decay operation, and logic high sets fast decay mode. Note that the DECAY pin sets the decay mode for both H-bridges. Mixed decay mode begins as fast decay, but at a fixed period of time (75% of the PWM cycle) switches to slow decay mode for the remainder of the fixed PWM period. #### VM Undervoltage Lockout (UVLO) If at any time the voltage on the VM pin falls below the undervoltage-lockout threshold voltage, all FETs in the H-bridge will be disabled. Operation resumes when VM rises above the UVLO threshold. #### **Overcurrent Protection (OCP)** An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge will be disabled and the nFAULT pin will be driven low. The device will remain disabled until either nRESET pin is applied, or VM is removed and reapplied. Overcurrent conditions on both high and low side devices; that is, a short to ground, supply, or across the motor winding will all result in an overcurrent shutdown. Note that overcurrent protection does not use the current sense circuitry used for PWM current control, and is independent of the I_{SENSE} resistor value or VREF voltage. #### Thermal Shutdown (TSD) If the die temperature exceeds safe limits, all FETs in the H-bridge are disabled. After the die temperature has fallen to a safe level, operation automatically resumes. #### **VM Control** In some systems, varying VM as a means of changing motor speed is desirable. #### **Application Curves** ### **APPLICATION INFORMATION** ### **Application information** The TMI8263R can be used to control a bipolar stepper motor. The PWM interface controls the outputs and current control can be implemented with the internal current regulation circuitry. Detailed fault reporting is provided with the internal protection circuits and nFAULT pin. Figure 3. TMI8263R Typical Application # **Block Diagram** Figure 4. TMI8263R Block Diagram ## **PACKAGE INFORMATION** #### HTSSOP28 Unit: mm | | | | | | | | O1111C. 1111111 | | |----------|--------|----------------|--------|---------|--------------------------|------|-----------------|--| | Cymah al | Dimens | sions In Milli | meters | Cymahal | Dimensions In Millimeter | | | | | Symbol | Min | NOM | Max | Symbol | Min | NOM | Max | | | Α | - | - | 1.20 | D2 | 3.95 | 4.05 | 4.15 | | | A1 | 0.05 | - | 0.15 | Е | 6.20 | 6.40 | 6.60 | | | A2 | 0.80 | - | 1.00 | E1 | 4.30 | 4.40 | 4.50 | | | A2 | 0.39 | 0.44 | 0.49 | E2 | 2.75 | 2.85 | 2.95 | | | b | 0.20 | - | 0.29 | е | 0.65BSC | | | | | b1 | 0.19 | 0.22 | 0.25 | L | 0.45 | 0.60 | 0.75 | | | С | 0.13 | - | 0.18 | L1 | 1.00BSC | | | | | c1 | 0.12 | 0.13 | 0.15 | θ | 0° | - | 8° | | | D | 9.60 | 9.70 | 9.80 | | | | | | #### Note: - 1) All dimensions are in millimeters. - 2) Package length does not include mold flash, protrusion or gate burr. - 3) Package width does not include inter lead flash or protrusion. - 4) Lead popularity (bottom of leads after forming) shall be 0.10 millimeters max. - 5) Pin 1 is lower left pin when reading top mark from left to right. ## TAPE AND REEL INFORMATION ### **TAPE DIMENSIONS: HTSSOP28** Unit: mm | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | Symbol | Dimensions | |--------|------------|--------|------------|--------|------------|--------|------------| | A0 | 6.70±0.10 | θ | 5° TYP | Е | 1.75±0.10 | D1 | 1.55MIN | | В0 | 10.05±0.10 | t | 0.30±0.05 | F | 7.50±0.10 | P0 | 0.30±0.10 | | K0 | 1.50±0.10 | W | 16.00±0.30 | P2 | 2.00±0.10 | 10P0 | 40.00±0.20 | | K1 | 1.35±0.10 | Р | 8.00±0.10 | D | 1.50±0.10 | | | ### **REEL DIMENSIONS: HTSSOP28** Unit: mm | Ø A | В | øс | ØD | t | |---------|----------|---------|----------|---------| | 329±1.0 | 16.8±1.0 | 100±0.5 | 13.3±0.3 | 2.0±0.3 | #### Note: - 1) All Dimensions are in Millimeter - 2) Quantity of Units per Reel is 4500 - 3) MSL level is level 3. www.toll-semi.com TMI8263R V1.0 2023 ## **Important Notification** This document only provides product information. Xi'an TOLL Microelectronic Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. Xi'an TOLL Microelectronic Inc. cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a TMI product. No circuit patent licenses are implied. All rights are reserved by Xi'an TOLL Microelectronic Inc. http:// www.toll-semi.com