Gauge / Absolute pressure transmitter

Model: SMT2012-B

Spec. sheet no. SD02-06

Service intended

The Gauge/Absolute pressure transmitter SMT2012-B is suitable to measure liquid, gas, and steam flow as well as liquid level, density and pressure.

SMT2012-B outputs a 4~20 mADC signal corresponding to the measured pressure.

Its highly accurate and stable sensor can also measure

Its highly accurate and stable sensor can also measure the static pressure which can be shown on the integral indicator or remotely monitored via HART communications. Other key features include quick response, remote set-up using communications, self-diagnostics and optional status output for pressure high/low alarm.

Standard features

Base accuracy

±0.075 % of calibrated span.

Range limits

 $0 \sim 600 \text{ Pa to } 0 \sim 40 \text{ MPa}$

Turn down

Adjustable up to 100:1 range ability

Temperature compensation

High sensitivity temperature sensor packaged in the sensor

Isolating diaphragm

Stainless steel 316L / Hastelloy C

Measurement medium

Gas, Steam and liquid

Stability

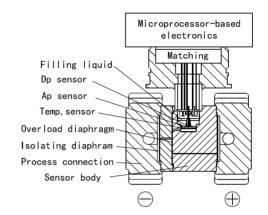
10 years stability 0.15 % of URL

Output

4 ~ 20 mA with HART protocol

Principle of operation

The pressure transmitter includes two functional units:


- Main unit
- · Auxilary unit

The main unit includes a sensor and process connection.

The completely welded sensor module is a twin-chamber system with an integral overload diaphragm, an absolute pressure sensor, a temperature sensor and the silicon differential pressure sensor.

The absolute pressure sensor, which is only exposed to the pressure at the high pressure side, acts as a reference value to compensate for the static pressure.

The temperature sensor as a temperature compensated reference value to compensate for the temperature drift.

Main specification

- The differential pressure transmitter utilize the world's leading high stability silicon sensor, the highest Reference Accuracy is ±0.075 %
- Micro-differential pressure transmitter utilize the world's leading dual overload diaphragm patented technology, the highest Reference Accuracy is ±0.075 %
- The differential pressure transmitter working pressure are 16, 25 and 40 MPa, the one-way overload pressure up to 40 MPa
- Micro-pressure / absolute pressure transmitter utilize the no pressure transmission loss overload diaphragm patented technology, the one-way overload pressure up to 7 MPa
- The absolute pressure sensor packaged in the differential pressure transmitter, can be used for static pressure measurement, display and the static pressure compensation. The minimum of the static error is ≤ ±0.075 % / 10 MPa
- High sensitivity temperature sensor packaged in the sensor. The minimum of the temperature error is ≤ ±0.04 % / 10 K
- Stainless steel 316L and silicone oil filling welded seal structure
- Long stability is ≤ ±0.1 % / 3 years, 10 years of maintenance-free
- Extremely wide measuring range 100 Pa ~ 60 MPa
- Adjustable up to 100:1 range ability
- The remote seal transmitter utilize ultra-high temperature(400 °C) patented technology.

Performance Specifications

Reference Accuracy of Calibrated Span (includes terminal-based linearity, hysteresis, and repeatability) \pm 0.075 % If TD > 10(TD = URL / SPAN), \pm (0.0075 × TD)%

The square root accuracy is 1.5 times of reference accuracy of calibrated span.

Ambient Temperature Effects

-20 \sim 65 °C : \pm (0.2 × TD + 0.05)% × Span Every 10 °C is \pm 0.08 % × Span (TD=1)

 $-40 \sim -20$ °C and 65 ~ 85 °C : $\pm (0.3 \times TD + 0.1)\% \times Span$

Overpressure Effects

±0.075 % × Span / 10 MPa

Stability

±0.1 % × Span / 3 years

Power Supply Effects

±0.001 % / 10 V (12~42 V DC)

Reference Accuracy of Calibrated Span

(Includes terminal-based linearity, hysteresis, and repeatability)

Measureme	ent span	1B ± 0.075 % of span				
	X ≤ Span					
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span				
X		0.6 kPa				
URL (Upper r	ange limit)	6 kPa				
Measureme	ent span	1C, 1L				
	X ≤ Span	± 0.075 % of span				
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span				
X		4 kPa				
URL (Upper r	ange limit)	40 kPa				
Measureme	ent span	1D, 1M				
	X ≤ Span	± 0.075 % of span				
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span				
X		25 kPa				
URL (Upper r	ange limit)	250 kPa				
Measureme	ent span	1E				
	X ≤ Span	± 0.075 % of span				
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span				
X		0.1 MPa				
URL (Upper r	ange limit)	2 MPa				
Measurement span		1G				
	X ≤ Span	± 0.075 % of span				
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span				
X		2.1 MPa				
URL (Upper range limit)		21 MPa				

Measuren	nent span	1H		
	X ≤ Span	± 0.075 % of span		
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u> Span)% of span		
)	<	10.6 MPa		
URL (Upper	range limit)	21 MPa		
Measuren	nent span	11		
Reference accuracy	X ≤ Span	± 0.075 % of span		
	X ≥ Span	± (0.0075 + URL Span)% of span		
X		20.2 MPa		
URL (Upper range limit)		40 MPa		
Measurement span		10		
	X ≤ Span	± 0.075 % of span		
Reference accuracy	X ≥ Span	± (0.0075 + <u>URL</u>)% of span		
X		1.5 MPa		
URL (Upper range limit)		3 MPa		

Maximum total performance

For temperature change of 28 °C, static pressure change of 5.1 Mpa, for model SMT2012-B.

Sensor	Span	Maximum total performance
1B	0~0.6 kPa to 0~6 kPa, 0~06 to 0~60 mbar	
1C	0~2 kPa to 0~40 kPa, 0~2 to 0~400 mbar	
1D	0~2.5 kPa to 0~250 kPa, 0~25 mbar to 0~2.5 bar	
1E	0~20 kPa to 0~2 MPa, 0~0.2 to 0~20 bar	
1G	0~0.1 MPa to 0~10 MPa, 0~1 to 0~100 bar	≤ ±0.188 % of calibrated span
1H	0~0.21 MPa to 0~21 MPa, 0~2.1 to 0~210 bar	≥ ±0.100 % of Calibrated Spari
11	0~0.4 MPa to 0~40 MPa, 0~4 to 0~400 bar	
1L	0~2 kPa to 0~40 kPa, 0~0.02 to 0~0.4 bar	
1M	0~2.5 kPa to 0~250 kPa, 0~0.025 to 0~2.5 bar	
10	0~30 kPa to 0~3 MPa, 0~0.3 to 0~30 bar	

*Note: Sensor "1L", "1M", "1O" is Absolute pressure

$$E_{Mperf} = \sqrt{(E_{\Delta TZ} + E_{\Delta TS})^2 {E_{\Delta PS}}^2 + {E_{lin}}^2}$$

 $E_{Mperf} = Maximum total performance$

 $E_{\Delta Tz} = Effect\ of\ the\ ambient\ temperature\ on\ zero$

 $E_{\Delta Ts} = Effect \ of \ the \ ambient \ temperature \ on \ span$

 $E_{\Delta Ps} = Effect \ of \ the \ static \ pressure \ on \ span$

 $E_{lin} = Accuracy \ rating \ (for \ terminal-based \ linearity \ 0.075 \ \% \ \ as \ per \ model \ and \ sensor \ accuracy)$

Total performance

Similar to DIN 16086

Temperature change in the range from -10 to 60 °C, static pressure change. (SMT2012-B) 10 Mpa

$$E_{perf} = \sqrt{(E_{\Delta TZ} + E_{\Delta TS})^2 E_{\Delta PS}^2 + E_{lin}^2}$$

 $E_{perf} = Total performance$

 $E_{\Delta Tz} = Effect$ of the ambient temperature on zero

 $E_{\Delta Ts} = Effect$ of the ambient temperature on span

 $E_{\Delta Ps} = Effect$ of the static pressure on span

 E_{lin}

= Accuracy rating (for terminal – based linearity 0.075 % as per model and sensor accuracy)

Maximum total performance and Total performance includes the measuring errors of

- Non-linearity including hysteresis and non-reproducibility,
- Thermal change of the ambient temperature as regards the zero signal and the calibrated span,
- Effect of static pressure change on the calibrated span, with transmitter re-zeroed at line pressure

Functional Specifications

Span and Range Limits

Spa	n / Range Limits	kPa	bar		
1B	Span	0.6 ~ 6	6 ~ 60 mbar		
	Range Limits	-6 ~ 6	-60 ~ 60 mbar		
1C/1L	Span	2 ~ 40	0.02 ~ 0.4		
	Range Limits	-40 ~ 40	-0.4 ~ 0.4		
1D/1M	Span	2.5 ~ 250	0.025 ~ 2.5		
	Range Limits	-100 ~ 250	-1 ~ 2.5		
1E	Span	20 ~ 2000	0.2 ~ 20		
	Range Limits	-100 ~ 2000	-1 ~ 30		
1G	Span	0.1 ~ 10 MPa	1 ~ 100		
	Range Limits	-0.1 ~ 10 MPa	-1 ~ 100		
1H	Span	0.21 ~ 21 MPa	2.1 ~ 210		
	Range Limits	-0.1 ~ 21 MPa	-1 ~ 210		
11	Span	0.4 ~ 40 MPa	4 ~ 400		
	Range Limits	-0.1 ~ 40 MPa	-1 ~ 400		
10	Span	30 ~ 3000	0.3 ~ 30		
	Range Limits	-100 ~ 3000	-1 ~ 30		

Zero Adjustment Limits

Zero can be fully elevated or suppressed, within the lower and upper range limits of the capsule.

Overload Pressure Limits

Span	6 kPa	40 kPa	250 kPa	3 MPa	
	[1B]	[1C]	[1D]	[1E]	
OPL	16 MPa				
Span	10 MPa (1G)	21 MPa (1H) 40 MPa (I)			
OPL	20 MPa	50 MPa			

External Zero Adjustment

External zero is continuously adjustable with 0.01 % incremental resolution of span. Re-range can be done locally using the range setting switch.

Mounting Position Effects

Rotation in diaphragm plane has no effect. Tilting up to 90° will cause zero shift up to 0.25 kPa which can be corrected by the zero adjustment.

Output

Two wire 4~20 mADC output with digital communications, linear or square root programmable. HART FSK protocol are superimposed on the 4~20 mADC signal. Output range: 3.9 mA to 20.5 mA.

Failure Alarm (the mode can be selected)

Low Mode (min): 3.7 mA High Mode (max): 21 mA

No Mode (hold): Keep the effective value before the fault.

* Note: The standard setting of failure alarm is High Mode.

Response Time

The amplifier damping constant is 0.1 sec.

The sensor damping constant is 0.1~1.6 sec, it depends on the range and range compression ratio. Amplifier damping time constant is adjustable from 0.1 to 60 sec by software and added to response time.

UpTime

< 15s

Static Pressure Limits

3.5 kPa absolute to maximum working pressure

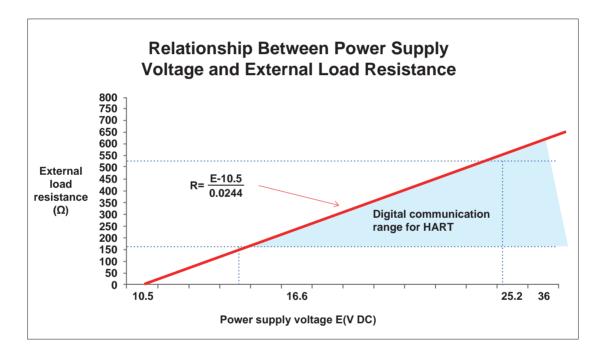
One-way Overload Pressure Limit

The maximum one-way overload pressure is maximum working pressure

HART digital communication and 4 to 20 mA output Power Supply

The transmitter operates from 12 to 36 V DC with no load and is protected against reverse polarity connection Minimum operating voltage increase to 12 V DC with surge protector

Ripple


20 mV max on a 250 Ω load as per HART specifications.

Load limitations

4 to 20 mA and HART total loop resistance :

R (kΩ) =
$$\frac{\text{Supply voltage - min. operating voltage (V DC)}}{22 \text{ mA}}$$

A minimum of 250 Ω is required for HART communication.

Supply and Load Requirements

24 VDC supply, R≤(Us-12 V) / Imax kΩ, Imax = 23 mA.

Maximum voltage limited: 42 VDC, Minimum voltage limited: 12 VDC, 15 VDC (with LCD display)

230Ω to 600Ω for digital communication

Electrical Connection

The electrical connection is made via cable entry M20x1.5.

The screw terminals are suitable for wire cross-sections up to 2.5 mm².

| 545

Process Connection

Flange with fixing thread 7/16-20 UNF and 1/4-18 NPT female thread on both sides.

Electromagnetic field

Meets all the requirements of EN 61326 and NAMUR NE-21.

Load

Within load/voltage specified limits the total effect is negligible

Install

The transmitter housing can be rotated about 360 degrees relative to the transmitter module without affecting the performance and internal wiring.

Transmitter can be operated Through the PC machine or notebook computer via modem.

Modem can be connected in parallel to the signal circuit at arbitrary point.

The modem communicates with the transmitter through an AC signal superimposed on the 4~20 mA output signals.

This modulation does not change in the mean values, so does not affect the measurement signal.

Physical Specifications

Wetted Parts Materials

Sensor Body

Stainless steel 316L

Isolating Diaphragm

Stainless steel 316L / Hastelloy C

Cover Flange

Stainless steel 316

Nuts and Bolts

Stainless steel 304

Process Connector

Stainless steel 316

Fill fluid

Silicone oil / Fluorinated oil

Process Connector Gasket

NBR / Viton / Teflon

Amplifier Housing

Aluminium with epoxy resin coat

Housing Gasket

Perbunan (NBR)

Name plate and tag

Stainless steel 304

Weight

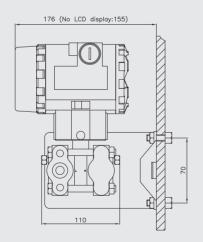
3.3 kg

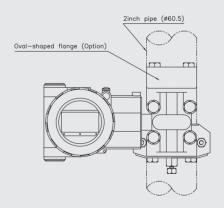
Degrees of Protection

IP67

SMT2012-B: Type of mounting

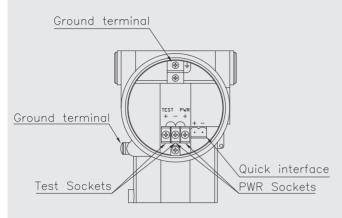
Unit: mm

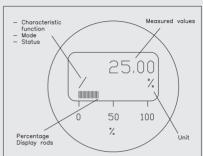

Horizontal Impulse Piping Type (Side face)


Horizontal Impulse Piping Type (Front side)

Horizontal Impulse Wall Mounting Type

Vertical Impulse Piping Type

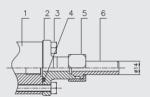




SMT2012-B: Type of mounting

Terminal Configuration

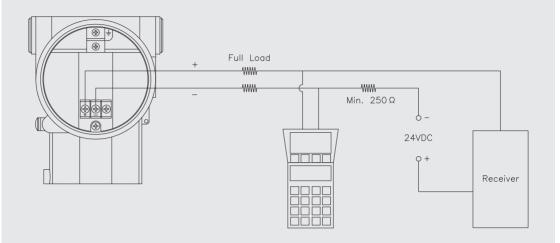
LCD Display

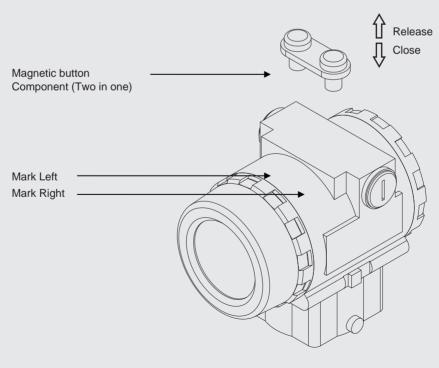


Process Connection Description

Oval-shaped flange with 1/4-18 NPT female thread (Code 1)

D-shaped connector with M20X1.5 male thread (Code 2)




- 1. Flange
 2. D-shaped connector
 3. Bolt
 4. O-ring
 5. M20x1.5 Nut
 6. Joining pipe

SMT2012-B: Type of mounting

Electrical Connection Diagram

Control Button

Main order

Ordering information

1. Base model

SMT2012-B Gauge / Absolute Pressure Transmitter

2. Accuracy

S 0.075 % **A** 0.1 %

3. Span (kPa / bar)

1B 0-0.6 ~ 6 / 6 ~ 60 mbar

1C 0-2 ~ 40 / 0-20 ~ 400 mbar

1D 0-2.5 ~ 250 / 0-25 ~ 2500 mbar

1E 0-20 kPa ~ 2 MPa / 0-0.2 ~ 20

1G 0-0.1 ~ 10 MPa / 0-0.1 ~ 100

1H 0-0.21 ~ 21 MPa / 0.21 ~ 210

1I 0-0.4 ~ 40 MPa / 0-4 ~ 4000

1L 0-2 to 40 / 0-0.02 ~ 0.4 (Absolute)

1M 0-2.5 ~ 250 / 0-0.025 ~ 2.5 (Absolute)
 10 0-30 kPa ~ 3 MPa / 0-0.3 ~ 30 (Absolute)

4. Diaphragm fill fluid

A Stainless steel 316L / Silicone oil

C Hastelloy-C / Silicone oil

5. Maximum working pressure (MPa)

1 16

2 25

3 40

6. Process connections

N 7/16-20 UNF and 1/4-18 NPT female thread, No relief valve

B 7/16-20 UNF and 1/4-18 NPT female thread,

Relief valves at end of flanges

U 7/16-20 UNF and 1/4-18 NPT female thread, Relief valves at the upper part of the flange side

D 7/16-20 UNF and 1/4-18 NPT female thread, Relief valve at the lower part of the flange side

7. Special Function

N None

O Degrease cleansing treatment (Oxygen measurement must be with fluorinated oil filled capsule, Viton (FKM) gasket, < 6 MPa ,< 60 °C)</p>

8. Mounting bracket

N None

1 Stainless steel 304

2 Carbon steel galvanized

9. Process connector accessory

N None

Stainless steel oval-shaped flange with
 1/2 NPT famale thread

2 Stainless steel D-shaped connector with

M20X1.5 male thread

10. Explosion-proof option

N None

I Intrinsic safety Ex ia

D Isolated explosion Ex d

1	2	3	4	5	6	7	8	9	10	Sample
SMT2012-B	S	1B	Α	1	N	0	2	2	N	ordering code

