FEATURES

PRODUCT APPEARANCE

- > Operates with a single 3.3V supply
- ➤ Compatible with ISO 11898-2 standard
- \triangleright Bus pin ESD protection exceeds $\pm 12kV$ (HBM)
- ➤ High input impedance allows for up to 120 nodes
- > Adjustable driver transition times for improved emissions performance
- Low current standby mode: 360μA typical
- > Designed for data rates up to 1Mbps
- > Thermal shutdown protection
- > Open circuit fail-safe design
- ➤ Glitch free power up and power down protection for hot plugging applications


Provide environmentally friendly lead-free package

DESCRIPTION

SIT65HVD235 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the 3.3V μ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

PARAMETER	SYMBOL	CONDITION	MIN.	MAX.	UNIT
Supply voltage	V_{cc}		3	3.6	V
Maximum transmission rate	1/t _{bit}	Non-return to zero code	1		Mbaud
CANH, CANL input or output voltage	V_{can}		-36	+36	V
Bus differential voltage	V_{diff}		1.5	3.0	V
Virtual junction temperature	T_{amb}		-40	125	°C

PIN CONFIGURATION

PIN DESCRIPTION

PIN	SYMBOL	DESCRIPTION
1	D	CAN transmit data input (LOW for dominant and HIGH for recessive bus states), also called TXD, driver input.
2	GND	Ground.
3	VCC	Transceiver 3.3V supply voltage.
4	R	CAN receive data output (LOW for dominant and HIGH for recessive bus states), also called RXD, receiver output.
5	AB	Automatic baud rate loop mode input control pin.
6	CANL	Low level CAN bus line.
7	CANH	High level CAN bus line.
8	R_S	Mode select pin: strong pull down to GND=high speed mode, strong pull up to V_{CC} =low power mode, $10k\Omega$ to $100k\Omega$ pull down to GND=slope control mode.

LIMIT VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	V_{CC}	-0.3~+6	V
MCU side voltage	D, R	-0.5~VCC+0.5	V
Bus side input voltage	CANL, CANH	-36~36	V
Transient voltage on pins CANH, CANL (test with 100Ω) See Fig 11	$ m V_{tr}$	-40~+40	V
Receiver output current	I_{O}	-11~11	mA
Storage temperature	T_{stg}	-40~150	°C
Virtual junction temperature	$T_{\rm j}$	-40~125	°C
Welding temperature range		300	°C

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

DRIVER ELECTRICAL DC CHARACTERISTICS

SYMBOL	PARAMET	ΓER	CONDITION	MIN.	TYP.	MAX.	UNIT
X 7	output voltage	CANH	$VI=0V$, $R_S=0V$, $R_L=60\Omega$	2.45		VCC	3.7
$V_{O(D)}$	(Dominant)	CANL	<u>Fig 1, Fig 2</u>	0.5		1.25	V
V	Differential outp	ut	$VI=0V$, $R_S=0V$, $R_L=60\Omega$ Fig 1	1.5	2	3	V
V _{OD(D)}	voltage (Domina	nnt)	VI=0V, R_L =60 Ω , R_S =0V <u>Fig 3</u>	1.2	2	3	V
V	output voltage	CANH	$VI=3V, R_S=0V, R_L=60\Omega$		2.3		V
$V_{O(R)}$	(Recessive)	CANL	Fig 1		2.3		V
3 7	Differential outp	out	$VI=3V, R_S=0V$	-0.12		0.012	V
$V_{\mathrm{OD(R)}}$	voltage (Recessi	ve)	VI=3V, R _S =0V, No load	-0.5		0.05	V
I_{IH}	High-level input	current	VI=2V	-30		30	μΑ
I_{IL}	Low-level input	current	VI=0.8V	-30		30	μΑ
			CANH=-7V	-250			
т	Short-circuit out	put	CANH=12V			1	mA
I_{OS}	current		CANL=-7V	-1			
			CANL=12V			250	mA
Co	Output capacitar	nce	See receiver				
			Standby		360	600	μΑ
I_{CC}	Supply current		V _I =0V (Dominant), No load			6	mA
1((Supply Carrell		V _I =VCC (Recessive), No load			6	mA

(If not otherwise specified, V_CC=3.3V $\pm 10\%$, Temp=T_{MIN} \sim T_{MAX} , Typical: VCC=+3.3V, Temp=25 °C)

DRIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
		R=0, Short circuit (<u>Fig 4</u>)		35	85	ns
Propagation delay time (low-to-high-level)	$t_{ m PLH}$	R=10kΩ		70	125	ns
(low-to-mgn-level)		R=100kΩ		500	870	ns
		R=0, Short circuit (<u>Fig 4</u>)		70	120	ns
Propagation delay time (high-to-low-level)	$t_{ m PHL}$	R=10kΩ		130	180	ns
(mgn to low level)		R=100kΩ		870	1200	ns

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay		R=0, Short circuit (<u>Fig 4</u>)		35		ns
symmetry	$t_{sk(p)}$	R=10kΩ		60		ns
$(\mid t_{PLH} - t_{PHL} \mid)$		R=100kΩ		370		ns
		R=0, Short circuit (<u>Fig 4</u>)	20		80	ns
Differential output signal rise time	$t_{\rm r}$	R=10kΩ	30		160	ns
signal rise time		R=100kΩ	300		1400	ns
		R=0, Short circuit (<u>Fig 4</u>)	20		80	ns
Differential output signal fall time	${ m t_f}$	R=10kΩ	30		160	ns
Signal fan tillic		R=100kΩ	300		1400	ns

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C).

RECEIVER ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Positive-going input threshold voltage	$V_{\rm IT+}$	Table 1		750	900	mV
Negative-going input threshold voltage	$V_{\text{IT-}}$	Table 1	500	650		mV
Hysteresis voltage	V_{hys}	VIT+- VIT-		100		mV
High-level output voltage	$ m V_{OH}$	-6V <v<sub>ID<00mV I_O=-8mA (<u>Fig 5</u>)</v<sub>	2.4			V
Low-level output voltage	V_{OL}	900mV <v<sub>ID<6V I_O=8mA (<u>Fig 5</u>)</v<sub>			0.4	V
Bus input current	\mathbf{I}_{i}	VIH=12V, VCC=0V	100		600	μΑ
Bus input current	I_{i}	VIH=12V, VCC=3.3V	100		500	μΑ
Bus input current	\mathbf{I}_{i}	VIH=-7V, VCC=0V	-450		-20	μΑ
Bus input current	I_{i}	VIH=-7V, VCC=3.3V	-610		-30	μΑ
Bus input resistance	R_{i}		20	35	50	kΩ
Differential input resistance	$R_{ m diff}$	Corresponding standards	40		100	kΩ
Bus input capacitance	C_{i}	of ISO 11898-2		40		pF
Differential input capacitance	$C_{ m diff}$			20		pF
Supply current	I_{CC}	See driver				

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C).

RECEIVER SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation delay time (low-to-high-level)	t _{PLH}	Fig 6		35	60	ns
Propagation delay time (high-to-low-level)	$t_{ m PHL}$	Fig 6		35	60	ns
Pulse skew	$t_{ m sk}$	t _{PHL} - t _{PLH}			10	ns
Output signal rise time	$t_{\rm r}$	<u>Fig 6</u>		1.5		ns
Output signal fall time	t_{f}	<u>Fig 6</u>		1.5		ns

(If not otherwise specified, $V_{CC}=3.3V\pm10\%$, Temp= $T_{MIN}\sim T_{MAX}$, Typical: VCC=+3.3V, Temp=25°C).

DEVICE SWITCHING CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
loop delay 1, driver		R=0, short circuit, Fig 8		70	135	ns
input to receiver output,	t _(LOOP1)	R=10kΩ		105	190	ns
recessive to dominant		R=100kΩ		535	1000	ns
loop delay 2, driver		R=0, short circuit, Fig 8		70	165	ns
input to receiver output,	$t_{(LOOP2)}$	R=10kΩ		105	190	ns
dominant to recessive		R=100kΩ		535	1000	ns
Loop back delay, driver input to receiver output	t _(AB1)	Fig 9		10	20	ns
Loop back delay, driver input to receiver output	$t_{(AB2)}$	Fig 10		35	60	ns

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C).

OVER TEMPERATURE PROTECTION

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Thermal shutdown temperature	$T_{j(sd)} \\$		155	165	180	°C

(If not otherwise specified, Vcc=3.3V $\pm 10\%$, Temp=T_{MIN} \sim T_{MAX} , Typical: VCC=+3.3V, Temp=25 °C).

CONTROL-PIN CHARACTERISTICS

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
wake-up time from standby mode	t _{WAKE}	R _S adds square wave <u>Fig 7</u>		0.55	1.5	μs
Input current for high-speed	I_{RS}	V _{RS} <1V	-450		0	μΑ
Input voltage for standby/sleep	$ m V_{RS}$	0 <v<sub>RS<v<sub>CC</v<sub></v<sub>	0.75V _{CC}		V_{CC}	V
Power-off leakage current	$ m I_{off}$	Vcc=0V, V _{CANH} =V _{CANL} =5V	-250		250	μΑ

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C).

SUPPLY CURRENT

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Power consumption		R _S =VCC,		260	600	4
in sleep mode		V _I =VCC		360	600	μΑ
Dominant power	т	$V_{I}=0V, R_{S}=0V,$		50	70	A
consumption	I_{CC}	LOAD=60Ω		50	70	mA
Recessive power		$V_I=VCC, R_S=0V,$			(4
consumption		No load			6	mA

(If not otherwise specified, V_{CC} =3.3V±10%, Temp= T_{MIN} ~ T_{MAX} , Typical: VCC=+3.3V, Temp=25°C).

FUNCTION TABLE

Table 1 Receiver characteristics in common mode ($V_{(RS)}$ =1.2V)

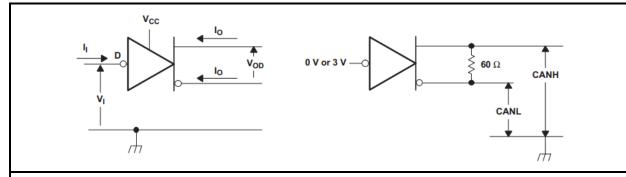
V _{ID}	V _{CANH}	V _{CANL}	R OUTPUT	
900mV	-6.1V	-7V	L	
900mV	12V	11.1V	L	V
6V	-1V	-7V	L	$ m V_{OL}$
6V	12V	6V	L	
500mV	-6.5V	-7V	Н	
500mV	12V	11.5V	Н	V
-6V	-7V	-1V	Н	$ m V_{OH}$
-6V	6V	12V	Н	
X	Open	Open	Н	

(1) H=High level; L=Low level; X=Irrelevant.

Table 2 Driver Function

INPUTS			OUTPUTS		
D	LBK	R_S	CANH	CANL	BUS STATE
X	X	>0.75V _{CC}	Z	Z	Recessive
L	L or open	<0.2217	Н	L	Dominant
H or open	X	<0.33V _{CC}	Z	Z	Recessive
X	Н	$0.33V_{\rm CC}$	Z	Z	Recessive

(1) H= High level; L=Low level; Z=High impedance.


Table 3 Receiver Function

Tuble o Received Tubetton						
	OUTPUT					
BUS STATE	V _{ID} =CANH-CANL	LBK	D	R		
Dominant	V _{ID} ≥0.9V	L or open	X	L		
Recessive	V _{ID} ≤0.5V or open	L or open	H or open	Н		
?	$0.5 < V_{ID} < 0.9V$	L or open	H or open	?		
Dominant	V _{ID} ≥0.9V	Н	X	L		
Recessive	V _{ID} ≤0.5V or open	Н	Н	Н		
Recessive	V _{ID} ≤0.5V or open	Н	L	L		
?	0.5< V _{ID} <0.9V	Н	L	L		

(1) H=High level; L=Low level; ?=uncertain; X=Irrelevant.

TEST CIRCUIT

Fig 1 Driver voltage, current and test definition

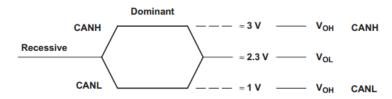
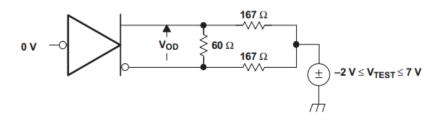
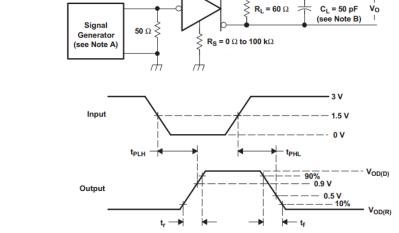




Fig 2 Bus logic state voltage definition

Fig 3 Driver Von test circuit

- A. The input pulse is supplied by a generator having the following characteristics: $PRR \le 125 \text{kHz}$, 50% duty cycle, $t_r \le 6 \text{ns}$, t_r
- B C_L includes fixture and instrumentation capacitance, the error is within 20%.

Fig 4 Driver test circuit and waveforms

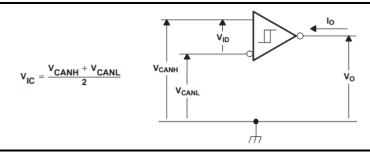
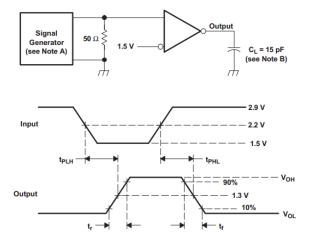



Fig 5 Receiver voltage and current definitions

- A. The input pulse is supplied by a generator having the following characteristics: $PRR \le 500 \text{kHz}$, 50% duty cycle, $t_r < 6 \text{ns}$, $Zo = 50 \Omega$.
- B, C_L includes fixture and instrumentation capacitance, the error is within 20%.

Fig 6 Receiver test circuit and waveform

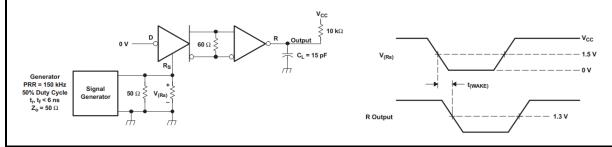
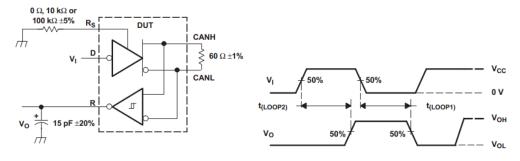
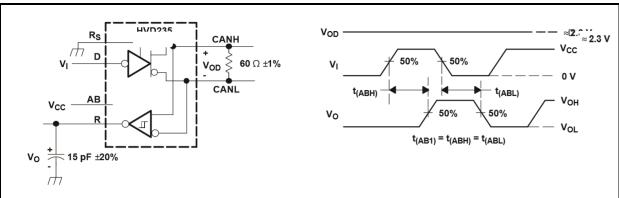




Fig 7 t_(WAKE) test circuit and waveform

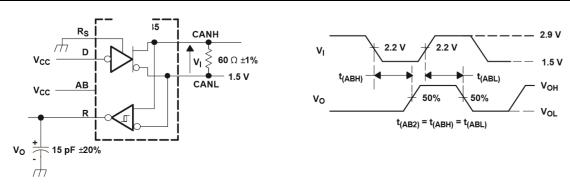

The input pulse is supplied by a generator having the following characteristics: $PRR \leq 125 kHz, 50\% \ duty \ cycle, \ t_{i} \leq 6ns, \ t_{i} \leq 6ns, \ Zo = 50\Omega.$

Fig 8 t_(LOOP) test circuit and waveform

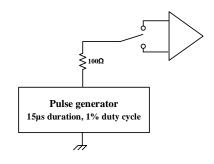

The input pulse is supplied by a generator having the following characteristics: PRR≤125kHz, 50% duty cycle, tr<6ns, tr<6ns.

Fig 9 t_(AB1) test circuit and waveform

The input pulse is supplied by a generator having the following characteristics: PRR≤125kHz, 50% duty cycle, t_r<6ns, t_f<6ns.

Fig 10 t_(AB2) test circuit and waveform

D, RS, and AB input status is 0 or VCC.

Fig 11 Overvoltage protection

ADDITIONAL DESCRIPTION

1 Sketch

The SIT65HVD235 is the interface between the Controller Area Network (CAN) protocol controller and the physical bus. It is designed for use with the 3.3V μ Ps, MCUs and DSPs with CAN controllers, or with equivalent protocol controller devices. It is used in industrial automation, control, sensors and drive systems, motor and robotic control, building and climate control (HVAC), telecom and base station control and status. It supports programmable data rates up to 1 Mbps. The devices are intended for use in applications employing the CAN serial communication physical layer in accordance with the ISO 11898 standard.

2 Current protection

A current-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

3 Over temperature protection

SIT65HVD235 has the function of over temperature protection. When the junction temperature exceeds 160°C, the current of the driver stage will be reduced. Because the driver tube is the main energy consuming component, the reduced current can reduce the power consumption and thus reduce the chip temperature. Meanwhile, the rest of the chip remains functional.

4 Transient protection

Electrical transients often occur in automotive application environment, CANH, CANL of SIT65HVD235 have the function of preventing electrical transient damage.

5 Operating modes

The R_S pin mode, slop (pin 8) of the SIT65HVD235 provides three different modes of operation: high-speed mode, slope-control mode, and low-power mode.

5.1 High-Speed Mode

The high-speed mode can be selected by applying a logic low to the R_S pin (pin 8). The high-speed mode of operation is commonly employed in industrial applications. High-speed allows the output to switch as fast as possible with no internal limitation on the output rise and fall slopes. If the high-speed transitions are a concern for emissions performance slope control mode can be used.

If both high-speed mode and the low-power standby mode is to be used in the application, direct connection to a μ P, MCU or DSP general purpose output pin. When the controller output logic level is low (<1.2V), the device enters high speed mode can be used to switch between a logic-low level (<1.2V) for high-speed operation, and the logic-high level (>0.75VCC) for standby.

5.2 Slope Control Mode

Electromagnetic compatibility is essential in many applications while still making use of unshielded twisted pair bus cable to reduce system cost. Slope control mode was added to the SIT65HVD235 devices to reduce the electromagnetic interference produced by the rise and fall times of the driver and resulting

harmonics. These rise and fall slopes of the driver outputs can be adjusted by connecting a resistor from R_S (pin 8) to ground or to a logic low voltage. The slope of the driver output signal is proportional to the pin's output current. This slope control is implemented with an external resistor value of $10k\Omega$ to $100k\Omega$ to achieve slew rate.

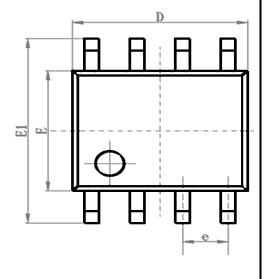
5.3 Standby Mode

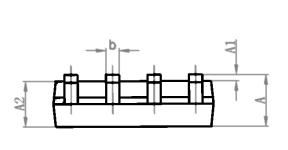
If a logic high (>0.75VCC) is applied to R_S (pin 8), the circuit of the SIT65HVD235 enters a low-current, listen only standby mode, during which the driver is switched off and the receiver remains active. In this listen only state, the transceiver is completely passive to the bus. It makes no difference if a slope control resistor is in place. The μP can reverse this low-power standby mode when the rising edge of a dominant state (bus differential voltage > 900 mV typical) occurs on the bus. The μP , sensing bus activity, reactivates the driver circuit by placing a logic low (<1.2V) on RS (pin 8).

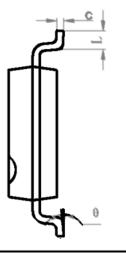
6 Automatic baud rate loop function

SIT65HVD235 can enter automatic baud rate loop mode by setting input pin 5 (AB) to high. In this mode, the driver output is disabled, blocking the transmission path of pin D to the bus and the transmission function of the bus, and the bus pin is set to recessive. In addition, the automatic baud rate loopback mode adds an internal logical loopback path from pin D to pin R, so that the local node can transmit to itself synchronously without causing interference to the information on the bus. Therefore, if the CAN controller of the local node generates an error frame, it is not transmitted to the bus, but only detected by the local CAN controller. This is particularly helpful for whether the local node is set to the same baud rate as the network, and whether it is adjusted to the network baud rate. Automatic baud rate detection is most appropriate for an application with a known selected baud rate. For example, popular communication frequencies in industrial devices are 125kbps, 250kbps, or 500kbps. Once the SIT65HVD235 enters the automatic baud rate loop mode, the application software can undertake the first baud rate of 125kbps. Then it will wait for another node on the bus to transmit the information. If a wrong baud rate is chosen, an error message is generated by the local CAN controller due to the wrong message sampling time. However, since the transmission function of the bus has been disabled, no other node will receive the error frame generated due to the CAN controller of this node.

The application will then use the status register indication of the local CAN controller to determine the received message and the error warning status to confirm whether the baud rate set is correct. The warning state indicates that the error count of the CAN controller has been increased. The received message status indicates that a correct message has been received. If an error is generated, the application sets the CAN controller with the next possible baud rate and waits to receive another message. This pattern is repeated until an error-free message is received. Thus, the correct baud rate has been selected. At this time, the application program sets the pin 5 of the SIT65HVD235 to low, so that the SIT65HVD235 enters the normal receiving mode, so that the bus sending and bus receiving functions of the transceiver reach the normal working state.

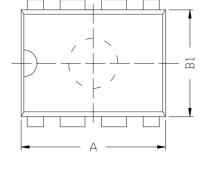

If the pin AB is not used, it can be either grounded (GND) or floated(open) because it is pulled down internally by the chip in the open state (the default is low input).

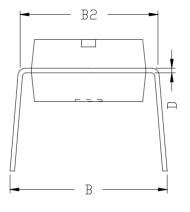


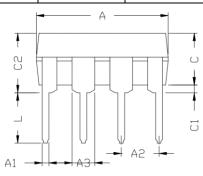

SOP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm	TYP./mm	MAX./mm
A	1.40	-	1.80
A1	0.10	-	0.25
A2	1.30	1.40	1.50
b	0.38	-	0.51
D	4.80	4.90	5.00
Е	3.80	3.90	4.00
E1	5.80	6.00	6.20
e		1.27BSC	
L	0.40	0.60	0.80
С	0.20	-	0.25
θ	0°	-	8°

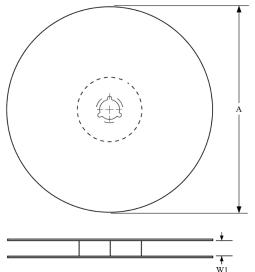


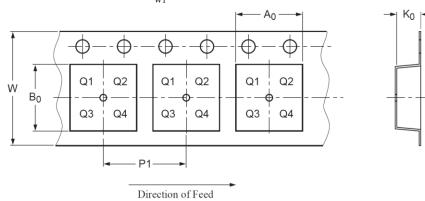



DIP8 DIMENSIONS

PACKAGE SIZE

SYMBOL	MIN./mm TYP./mm		MAX./mm
A	9.00	9.20	9.40
A1	0.33	0.45	0.51
A2		2.54TYP	
A3		1.525TYP	
В	8.40 8.70		9.10
B1	6.20	6.40	6.60
B2	7.32 7.62		7.92
С	3.20 3.40		3.60
C1	0.50 0.60		0.80
C2	3.71	4.00	4.31
D	0.20 0.28		0.36
L	3.00	3.30	3.60



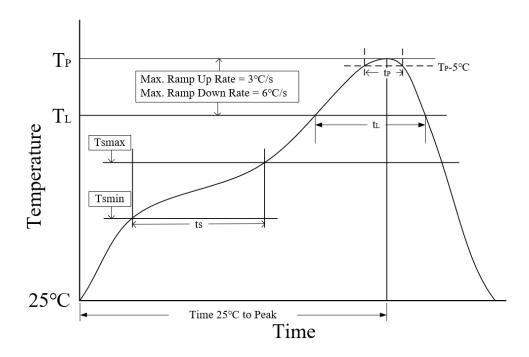


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the
	component width
В0	Dimension designed to accommodate the
ВО	component length
K0	Dimension designed to accommodate the
ΚU	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP8	330±2	12.4±0.40	6.50±0.1	5.30±0.10	2.05±0.1	8.00±0.1	12.00±0.1

PIN1 is in quadrant 1


ORDERING INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SIT65HVD235DR	SOP8	Tape and reel
SIT65HVD235P	DIP8	Tube

SOP8 is packed with 2500 pieces/disc in braided packaging. DIP8 is packed with 50 pieces/tube in tube packaging.

REFLOW SOLDERING

Parameter	Lead-free soldering conditions
Ave ramp up rate $(T_L \text{ to } T_P)$	3°C/second max
Preheat time ts (T _{smin} =150°C to T _{smax} =200°C)	60-120 seconds
Melting time t _L (T _L =217°C)	60-150 seconds
Peak temp T _P	260-265°C
5°C below peak temperature t _P	30 seconds
Ave cooling rate (T _P to T _L)	6°C/second max
Normal temperature 25°C to peak temperature T _P time	8 minutes max

Important statement

SIT reserves the right to change the above-mentioned information without prior notice.

VERSION HISTORY

Version number	Data sheet status	Revision Date
V1.0	Initial version.	February 2023