

DB201S THRU DB207S

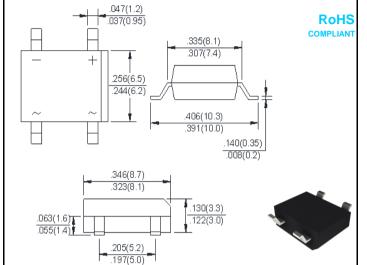
Glass Passivated Bridge Rectifiers

Reverse Voltage - 50 to 1000 Volts Forward Current - 2.0 Amperes

Features

- Glass passivated chip
- High surge forward current capability
- Reliable low cost construction utilizing molded plastic technique
- Lead tin plated copper
- •Meet UL flammability classification 94V-0

Mechanical Data


- Polarity: Symbol marked on body
- Mounting position: Any

Applications

 General purpose use in AC/DC bridge full wave rectification, for SMPS, lighting ballaster, adapter, etc.

DBS

Package Outline Dimensions in Inches (Millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25℃ ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

Symbol VRRM VRMS	DB201S 50 35	DB202S 100	DB203S 200	DB204S 400				Unit
		100	200	400	000			
VRMS	35			400	600	800	1000	V
	55	70	140	280	420	560	700	V
VDC	50	100	200	400	600	800	1000	V
I(AV)	2.0							Α
Irou	60							А
IFSW 00								
l ² t	14.9						A^2s	
VF	1.1						V	
In.	10							μΑ
IK	500							
Сл	25						pF	
RθJA	40						°C/W	
TJ	-55 to +150						$^{\circ}$	
Tstg	-55 to +150						$^{\circ}$ C	
	I(AV) IFSM I ² t VF IR CJ Reja	I(AV) IFSM I ² t VF IR CJ Reja	I(AV) IFSM I ² t VF IR CJ R0JA TJ	I(AV) IFSM I ² t VF IR CJ Reja TJ	I(AV) 2.0 IFSM 60 I²t 14.9 VF 1.1 IR 10 CJ 25 ReJA 40 TJ -55 to +15	I(AV) 2.0 IFSM 60 I²t 14.9 VF 1.1 IR 10 500 CJ CJ 25 ReJA 40 TJ -55 to +150	I(AV) 2.0 IFSM 60 I²t 14.9 VF 1.1 IR 10 500 CJ CJ 25 ReJA 40 TJ -55 to +150	I(AV) 2.0 IFSM 60 I²t 14.9 VF 1.1 IR 10 500 CJ CJ 25 ReJA 40 TJ -55 to +150

Notes: 1. Measured at 1.0 MHz and applied reverse voltage of 4.0V DC.

- 2. Thermal resistance from junction to ambient mounted on P.C.B ,with 0.5*0.5"(13*13mm) copper pads.
- 3. The typical data above is for reference only .

100

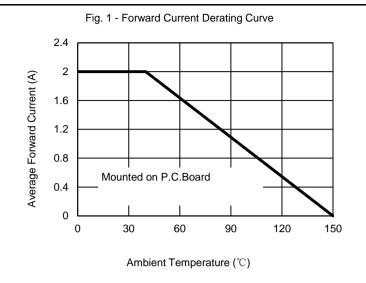
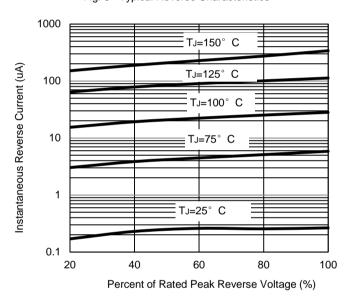



Fig. 3 - Typical Reverse Characteristics

70
(Y)
tual 50
0
8.3mS Single Half-Sine-Wave (JEDEC METOD)

40
30
20
10
0

Fig. 2 - Maximum Non-Repetitive Surge Current

Fig. 4 - Typical Forward Characteristics

10

Number of Cycles at 60Hz

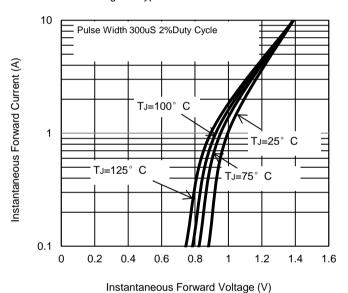
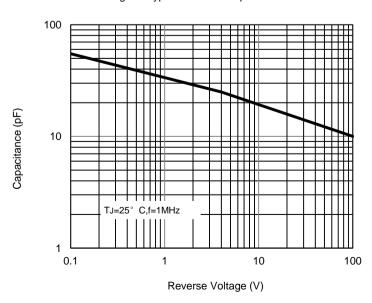



Fig. 5 - Typical Junction Capacitance

The curve above is for reference only.