

V-FLO Pumps & Systems Company Limited

Production Base in Dalian

President's Speech

Kingston WenFounder & President
Managing Director

V-FLO Group has been growing on the fast track with a momentum without limit since its foundation in 2002 under the guidance of corporate vision to Creating First Class Enterprise With Super Team Plus Reputed Fame & Brands. Developed on the basis of V-FLO Pumps & Systems, it has successfully grown into a multidisciplinary group focusing on international operations with businesses covering equipment packaging and supply chain management, Projects EPC, subcontracting and related consulting services as well as the development of new and renewable energy.

V-FLO is actively turning into an integration platform of technologies, products, services, markets and capitals in a way that China power and global resources meet each other without gap to generate infinite energy.

V-FLO has started a new journey to serve our customers in diversified industries for power, oil & gas, petrochemical and others. This can be translated into a wide scope of services from private basement to municipal sewage treatment, from the boiler room in a high rise building to a marine pier, in processing plants, power generating stations, paper mills, construction sites, operation and maintenance fleets and in farm fields, in solar and wind power generation as well LED lighting applications delivering our products and services to dozens of countries such as Saudi Arabia, Iraq, Iran, Syria, Jordan, Pakistan, Switzerland, Sweden, Russia and so on.

V-FLO Group, with the new workshop in operation in Dalian, China, is going to have an even more powerful team working at positions of R&D, manufacturing, contracting, marketing and management. We are dedicated to strive for a higher standard of service and products. Our investment in technology and research is second only to the support we give to our customers and employees. We approach the 21st century reaffirming our dedication to our customers, employees and vendors.

Why V-FLO?

- Experienced Management
- Win-win Cooperation
- Instant Response
- Professional Solutions
- High-quality Products

V-FLO Solution

Optimal Solution

Customer Service

Economic Cost

V-FLO Products

- Latest Technologies
- Extensive Applications
- Better Customer Experience

V-FLO PUNPS &

About Us

V-FLO Pumps & Systems, as the core business of V-FLO Group, covers wide markets and applications in the areas of oil & gas, chemical & petrochemical, power & energy, environment protection, metallurgy & mining, water supply and sewage treatment, sea water desalination, offshore platforms, underground coal gasification and so on.

Adding to the strength of V-FLO Group, the completion and commissioning of V-FLO Dalian Production Base brings brilliance to V-FLO manufacturing capability and capacity for pumps and systems. The production capacity has been increased to 8000 units of different pump systems with casting of 40,000t per year, maxi. weight of single piece up to 25 tons, machining capacity of 2 million hours according to international codes and standards such as ASME, ANSI, HIS, ISO and API610. V-FLO attributes the pump quality to our total quality control philosophy from raw materials, fabrication and machining, NDT & dimensions, hydrotest & dynamic balance, assembling & performance test, painting and packaging strictly in accordance with procedures and standards.

V-FLO Pumps & Systems are guaranteed with reliable high quality due to the strict execution of APIQ1, ISO9000-01 and ISO14000 management systems through the whole manufacturing process from products R&D, engineering design, fabrication and production, inspection and file management. V-FLO customer confidence and satisfactions are ensured with careful and humble services.

Business Licenses

Business License Registration No.: 210200400074325 Name: V-FLO PUMP R & D INSTITUTION Enterprise Type: Branch Company of Limited Liability(solely invested by legal person from Hongkang, Taiwan, Macao) Address: No. 6 Kaiyang Road, Lvshun Economic & Technological Zone, Dalian, Liaoning, China Legal Representative: OuyangChunbao Date of Establishment: Sep.24, 2015 Business Period: Sep.24, 2015 - May12, 2024 Business Scope: Manufacturing, research, design and test of pumps Manufacturing, research, design and test orjumps, valves and devices for solar power generation and other renewable power generation (Business activities shall be carried out as per the approved contents by relevan department of government) Issued by: Dalian Industry & Commerce Administrative Bureau

V-FLO PU 称: 大地域福祉机器制造有限公司 8 型 有前直任任司(台灣鄉往人無知) 所 以宁省大适点影响口经济技术开发区外济路4 法定代表人 前形象 注册资本 美元世经集场为元章 S & SYSTER 成立日期 2014年6月1日 音业期限 nascawestiatiwassawestiati 经营范围 at an annancementalist at an a

OWNERSON CHROMOSOM

Business License

LIMITED Unified social credit code : 912102000995443734

Name: V-FLO (DALIAN) MACHINE CO. LTD.

Enterprise Type: Company of Limited Liability(solely invested by legal person from Hongkang, Taiwan, Macao)

Address: No. 6 Kaiyang Road, LyshunkouEconomic & Techn Zone, Dalian, Liaoning, China

Legal Representative: Wen Xingquan Registered Capital: USD17 Million
Date of Establishment: May13, 2014

Business Period: May13, 2014 - May12, 2024

Business Scope: Manufacturing, research, design and test ofpumps, valves and devices for solar power generation and other renewable power generation ;(Business activities shall be carried out as per the approved contents by relevant department of government)

Issued by: Dalian Industry & Commerce Administrative Bureau March 15, 2016

V-FLO Pump Series

			V-FL0	O Pump Series			
Product	types	Oil & Gas	Hydrocarbon Processing	Mining & Metallurgic Industries	Power Generation	Water	General Industry
	VZA	Y	Y	Υ	Υ	Υ	Υ
	VZE	Y	Y	Υ	Y	Υ	Υ
Single Stage	IS/ISO			Υ	Y	Y	Υ
Pumps	HW			Υ	Y	Y	Υ
	WZ			Υ	Υ	Υ	Υ
	DSJH	Y	Υ	Υ	Υ		
Two Stage Pumps	GSJH	Y	Y	Υ	Υ		
Barrel Pumps	TD	Y	Y	Υ	Υ		Υ
Ring Section	D	Y		Υ	Υ	Υ	Υ
Pumps	DG	Y		Υ	Υ	Υ	Υ
	VSD	Y	Y	Υ	Υ	Y	Υ
Axial Split	CPS			Υ	Y	· ·	Υ
Pumps	SA			Υ	YVI	Y	Υ
	KY	Y	Y	Y	Y	Υ	Υ
	KDY	Y	Υ	YDAIN	Y	Υ	Υ
	VHGA	Y	Υ	COMIT	Υ	Υ	Υ
	VMC	Y	Y		Y	Y	Υ
	LY	Y		Υ	Y	Y	Υ
	VTMC	Y	12,1 h		Y	Y	Υ
Vertical Pumps	ISG	0.5	10	Υ	Y	Y	Υ
	TAA	OC -			Y		
211	нв/нк/н			Υ	Y	Υ	Υ
שאה	ZLB(Q)			Υ	Υ	Υ	Υ
ro Lo	FYL	Y	Y	Υ	Y		
	NLTD				Υ		.1
	KWP			Υ	Υ	Y	Y
	XBD/XBC	Y	Y	Υ		11	Y
	GQL/GQW	Y	Y	Υ	- 0		Υ
	KCB/YCB/2CY	Y	Y	Υ	OMP		Υ
	EH/2G/3G	Y	Y	Y	CO_{L_2}		Υ
	CQ	Y	Y	Y	Y		Υ
Others	PW/PL	Y	Y	CTYLL	Y		Υ
Others	GQJ/SG		0	CYDY	Υ	Y	Υ
	QW		nc 82	У	Y	Y	Υ
	QZ		MYS	Y	Υ	Y	Υ
	2DS/3DS	(g)	A	Υ			Υ
	ZX,ZZB,ZW	Y	Y	Y			Υ
	J/JM	Y	Y	Y			Υ
	ZD,ZG,ZX			Y	Υ		Υ
	2BE/2BV	Y	Y	Υ	Υ		Υ

V-F

Research & Design

V-FLO Pumps & Systems in Beijing, V-FLO Shen Yang Branch and V-FLO Dalian Machine are responsible for development of all kinds of pumps & systems to meet any complicated and demanding requirements from customers. V-FLO R&Ds are carried out by ways of further improvements and upgrading of existing technologies, independent high-tech patents as well as reverse engineering design for special purposes. In addition, V-FLO also joint our hands working together with domestic and foreign leading institutes as well as colleges and universities to develop special pumps to meet demanding challenges from fields of various applications.

> V-FLO R&D Teams

> CFD Simulation & Analysis

CFD flow field analysis helps to improve the pump

Reverse Engineering

- Holographic imaging for sample, intuitive and accurate, reproduce the internal three-dimensional structure of object;
- Make non-destructive slices and cross-section imaging in any direction;
- Replace traditional destructive slice detection and analysis;
- Spatial resolution and density resolution is excellent.

R&D capability& achievements

V-FLO Pumps & Systems has 3 research centers located in Beijing, Dalian and Shenyang committed to pump R&D with many achievements, 22 patents have been awarded up till now. In addition, V-FLO has been conferred as the National High-tech Enterprises by Beijing Municipal Government and Beijing Municipal Science& Technology Commission.

Manufacturing

Enterprise Resource Planning (ERP) has been employed in V-FLO to improve the production and management efficiency as well as better satisfaction of customer needs.

Casting: 40,000t per year.

Forging: 60,000t

Machining: Working capability up to 2 million hours.

Pump testing capability: 5000KVA **Pump production capacity:** 8000 units

Performance Test Exhibition

> Chemical & Mechanical Lab

HIR-944 HF-IR Carbon-Sulfur Analyzer

HR-150 Manual Rockwell Hardness Tester

KH170 Portable Hardness Tester

TMR5000 Metallurgical Microscope

> Dynamic Balancing Test

HM40U Dynamic Balancing Machine

	HM40U Dynamic Balance	ing Machine
	Model	HM40U
	Trademark	SCHENCK
	Max. rotor weight	3000 kg
	Range of bearing journal	90mm - 5000mm
	Max, shaft diameter of rotor support	Ф240 mm
	Max. balance speed	3600 rpm
	Allowable revolution diameter of rotor	Ф1600 mm
7 [7]	Drive power	15 KW
1-1.	Minimum achievable residual unbal.	emax≤0.1g·mm/kg
•	Applicable standard	ISO2953
		DAPANY LIL
		DH1000Q Belt Driven Hard Bearing Balancing Machine Model DH10000
		Model DH10000

	- A	
	DH1000Q Belt Driven Hard	Bearing Balancing Machine
	Model	DH1000Q
	Max, weight of workpiece	1000 kg
T	Max. diameter of workpiece	ф1500 mm
)	Bearing Distance	100-1800 mm
	Shaft diameter range of roller bearing	ф10 mm-ф200 mm
	Balance speed	approximately 1900 r/min (VF stepless speed regulation)
	Drive power	VF motor 4KW
	Minimum achievable residual unbal.	emax≤0.1g·mm/kg
	Measuring instrumentation	with DYJ-S80 microcomputer digital electric measuring system

> Pump Performance Test Loop

Closed Pump Test Loop

Open Pump Test Loop- Installation Platform & Water Pool

10KV/6KV/5000KVA Transformer

10KV Power Distribution Cabinet

50mx15m

Flow Measurement System

Magnetic Flowmeters

Φ1600 mm, Φ1000 mm, Φ600 mm, Φ300 mm, Φ250 mm Φ200 mm, Φ150 mm, Φ100 mm, Φ50 mm, Φ25mm

Water Pit

Volume of wet sump 3600 m³

Maximum depth 12 m

Power Supply

160kw, 800 kW @ 20HZ~60HZ

Maximum Lifting Facilities

50T

Closed Test Loop

Area

Close loop system.

Φ300 mm, Φ250 mm, Φ200 mm, Φ150mm, Φ100 mm
Φ50mm, Φ25mm Maximum flow: 500 mg / Tank Dimension

Tank capacity 60 m³

Power Supply

315KW/380V, 660V

VFD Test Motor Range

160kw @ 20HZ~60HZ

After sale & Maintenance

Installation and Commissioning

V-FLO after sales service not only covers supervision for site installation and commissioning, but also offers training for operation, maintenance and even a lot more as customers may require.

Quality Control

	Quality Plan Overview																						
	Designation				N	late	rial			NDE			Welding			Function							
		Form of Supply	Responsibility	Chemical Analysis	Tensile Properties	Impact Properties	IHardness	Corrosion Test	Heat Treament	Visual	Liquid Peneticel MT	Magnetic Particle MT	Ultrasonic UT	Radiographic RT	Procedure Qualification	Procedure Specification	Casting Repair	Hydrostatic Pressure Test	Dimension Check	Balancing	Performance Test	Final Inspection	Notes
1	Volute Casing	С	MS MA	3	3				3	5	4	4			4	4	5	4	5				Note
2	Casing Covers	С	MS MA	3	3				3	5	4	4			4	4	5	4	5	D			Note
3	Impellers	С	MS	3	3				3	5	4	4		- 1	4	4	5	,		4			Note
4	Pump Shaft	В	MS	3	3				3	5		_	4	Y	1	۱,			5	4			
5	Wear Rings	CW	MS	1						15		1	1,										
6	Bearing Housing	С	MA MS	1			C	-		5									5				
7	Pressure Retaining Fasteners	В	MA MS MA	S	FE	I				5									5				
8	Auxiliary & Process Pipework	3w	MS FW MA	S	T					5					4	4		4	5				
9	Baseplate	Р	MS FW MA	1						5					4	4			5				
10	Pump Complete		MA																5		4	4	

Note:MT can be applied when material is carbon steel.

Subject to legislation, verification documentation detailed above may be held at Sulzer or supplier premises. When required, Manufacturing Record Dossiers shall be compiled in accordance with project requirements and hela by Sulzer.

Form of Supply

B Bar

C Casting

F Forging

P Plate and Sections

W Wrough

Location of Test

MS Material Supplier

FW Fabrication Welding

MA Manufacturer

Verification Documents

- 1 Certificate of Compliance (EN 10204 2.1)
- 2 Test Report (EN 102004 2.2)
- 3 Inspection Certificate (EN 10204 3.1)
- 4 With Report
- 5 Without Report
- ST Product Marking

V-FLO Pumps & Systems, as per API Q1 management system, has QA and QC departments in the Headquarters, while QC teams with professional inspectors are working in branches and production workshops. More than 30 QA & QC engineers are directly involved in the pump quality control activities.

In the meantime, TPI has been a normal practice in V-FLO production activities. TUV, BV, LR, SGS, IKA, DNV, GL and other international parties have been working with us for the last 14 years.

18 months after delivery or 12 months after commissioning shall be guaranteed for trouble free operation under normal working conditions.

Content

- **Overview** I.
- 11. **Applications**
- **Performance Range** III.
- IV.
- V.
- VI.

Structure
Material Table S

Cross S

- V-FLO PUMP
- LY Series Performance Curves

 XII. LY Series Installation Drawings & Dimensions COMPANY LIMITED

 V-FLO PUMPS & SYSTEMS

I. Overview

LY series are single stage single suction radial split case long shaft submerged pumps designed and fabricated as per API 610 11th Edition VS4. Pump shaft shall be supported by rolling bearings inside the bearing housing as well as sleeve bearings inside the column pipes. The pump shall be installed under water as deep as 6m. Selection chart is able to cover the range of the flow rate up to 8 00m³/h and head up to 200m. It is applicable for pumping clean or polluted media.

Structural support parts, bearing assembly and pump shaft follow the principle of standard design so as to facilitate better spare parts interchangeability and easy for manufacturing and maintenance.

Rigid shaft is designed to guarantee stable operation of pump. The pump operating speed is designed well lower than the 1st critical speed of the rotor so as to guarantee the stable operation under severe conditions.

Pump is of radial split casing structure; pumps with nominal flange nozzle lager than 80mm are designed as double volute structure to balance radial force and vibration caused by hydraulic actions.

II. Applications

LY series are special pumps designed for pumping various liquids under severe conditions. It is applicable for discharging sewage, waste solution or chemical liquids under normal or high temperature in open sump pit or sealed pressure vessels, such as:

- Land pit pump for discharging incrustation in steel mill and rolling mill
 Chemical process pump F.MS C
- Sewage pump in sewage treatment plant
- Sewage pump in cement plant & paper mill
- Auxiliary pump in power station
- Effluent oil treatment in oil refinery and chemical plant
- Transportation of Sulphur

III. Performance Range

Flow rate: $Q = 2 \sim 8.00 \text{ m}^3/\text{h}$

Disch. Head: H = 5 ~ 200 m

Working pressure: up to 2.5 Mpa

Working temperature: t=-20 °C ~ +120 °C

IV. Model Description

LY25-200

Impeller nominal diameter(mm)

Discharge diameter(mm)

Vertical single-casing sump pump

V. Hydraulic Design

Its selection chart is of wide range with various impeller designs to meet the requirements of performance and service conditions. Hydraulic performance of each pump is the optimized output of international advanced design software and CFX fluidized simulation analyzer in combination with simulation verification

LIMITED

VI. Pump Structure

1. Connecting structure

• Connecting structure is of safety and reliability to guarantee operation of pump.

2. Pump casing

• It is of double volute structure (for pump nozzle larger than 80mm) to balance most of the radial force with less shaft deflection and vibration.

3. Support

• Rotor is designed with multi-points supporting and the guide bearing intervals conforming to API 610 standard to ensure that max. allowable continuous speed is lower than the 1st critical speed. Rolling bearing is lubricated by grease or oil to guarantee the service life as per API610 recommendation. Submersible sleeve bearings are equipped with external flushing or self-flushing.

4. Shaft seal

• Due to independent discharge pipe and non-pressurized medium leakage at shaft stretching direction, shaft seal is not needed for pumping non-volatile liquid. However, other forms of cartridge mechanical seals can be installed as per API682 in High strength rigid shaft design shall guarantee the stable operation of pump.
 6.Heat trace and insulation structure
 Steam boot to: case of need. Mechanical seal chamber design conforms to API610.

• Steam heat trace jacket is designed and fabricated around the pump casing, connection column and discharge pipes so that high temperature liquid sulphur can be transferred.

II. Material Table

VII. Material Table

	Material Grade and Code Number											
Parts Name	11931	I-2	S-1	S-3	S-4							
Pump casing	ASTM A278 Class 30	ASTM A278 Class 30	ASTM A216 Gr.WCB	ASTM A216 Gr.WCB	ASTM A216 Gr.WCB							
Impeller	ASTM A278 Class30	ASTM C90700	ASTM A278 Class 30	ASTM UNS F41000	ASTM A216 Gr.WCB							
Shaft	ASTM A576 Gr.1045	ASTM A576 Gr.1045	ASTM A576 Gr.1045	ASTM A576 Gr.1045	ASTM A576 Gr.1045							
Casing wear ring	ASTM A48 Class 25/30/40 HF	UNS C90700	ASTM A48 Class 25/30/40 HF	UNS F41000 HF	ASTM A48 Class 25/30/40 HF							
Impeller wear ring	ASTM A48 Class 25/30/40 HF	UNS C90700	ASTM A48 Class 25/30/40 HF	UNS F41000 HF	ASTM A48 Class 25/30/40 HF							

Parts Name		NY			
Parts Name	S-5	S-6	S-8	S-9	C-6
Pump casing	ASTM A216 Gr.WCB	ASTM A216 Gr.WCB	ASTM A216 Gr.WCB	ASTM A216 Gr:WCB	ASTM A217 Gr.CA15
Impeller	ASTM A216 Gr.WCB	ASTM A743 Gr.CA15	ASTM A743 Gr. CF8M	ASTM A494 M30C	ASTM A743 Gr.CA15
Shaft	ASTM A434 Class BB	ASTM A434 Class BB	ASTM A479 Gr. 316	ASTM B164 Class A	ASTM A276 Gr. 410
Casing wear ring	ASTM A473 Type 410 HF	ASTM A473 Type 410 HF	ASTM A182 Gr.F316 HF	UNS04400 HF	ASTM A473 Type 410 HF
Impeller wear ring	ASTM A473 Type 410 HF	ASTM A473 Type 410 HF	ASTM A182 Gr.F316 HF	UNS04400 HF	ASTM A473 Type 410 HF
		200			

415											
Parts Name	Material Grade and Code Number										
Parts Name	A-7	A-8	D-1	D-2							
Pump casing	ASTM A351 Gr. CF8	ASTM A351 Gr. CF8M	ASTM A890 Gr.1A	ASTM A890 Gr.5A							
Impeller	ASTM A743 Gr. CF8	ASTM A743 Gr. CF8M	ASTM A890 Gr.1A	ASTM A890 Gr.5A							
Shaft	ASTM A479 Gr. 304	ASTM A479 Gr. 316	ASTM A276-S31803	ASTM A276-S32760							
Casing wear ring	ASTM A182 Gr.F304 HF	ASTM A182 Gr. F316.HF	ASTM A182 Gr. F51 HF	ASTM A182 Gr.55 HF							
Impeller wear ring	ASTM A182 Gr.F304 HF	ASTM A182 Gr. F316.HF	ASTM A182 Gr. F51 HF	ASTM A182 Gr.55 HF							

VIII. Cross Section Drawings

1. Structural diagram of LY series single stage single suction centrifugal oil pump

- 1. Motor bracket
- 2. Bearing house
- 3. Mechanical seal
- 4. Bearing bracket
- 5. Sealing gland body
- 6. Base plate

- 9. Connection sleeve
- 11. Discharge pipe
- 12. Flushing pipe
- 13. Middle support pipe
- 14. Plain bearing body
- 15. Lower support pipe
- 16. Lower shaft
- 17. Guide spindle bearing

V-FLO

2. Structural diagram of LY series single suction centrifugal pump(Heat trace and insulation structure)

- 1. Motor bracket
- 2. Coupling
- 3. Bearing
- 4. Bearing bracket
- 5. Packing seal
- 6. Base plate
- 7. Upper support pipe

- Laude bearing

 11. Lower support pipe

 12. Lower shaft
- 13. Discharge pipe
- 14. Pump cover
- 15. Impeller
- 16. Impeller nut
- 17. Pump casing

IX. LY Series Family Curves

X. LY Series Performance Data Charts

	Flow rate	Disch. Head	Speed	Eff.	NPSHr	Shaft power	Motor power
Model	(m³/h)	(m)	(r/min)	(%)	(m)	(Kw)	(Kw)
LY25-200	14.4	55.9	2950	42	1.5	5.2	7.5
	7.2	14	1475	38	0.6	0.7	1.1
LY40-160	28	34	2950	63.5	3	4.1	5.5
	14	8.5	1475	61	1	0.5	0.75
LY40-200	34	53	2950	61	2	8.0	11
	17	13	1475	58	0.7	1.0	1.5
LY40-250	34.4	77	2950	54.5	1.9	13.2	18.5
	17.2	19.3	1475	50.2	0.75	1.8	3
LY40-315	45	108	2950	52	2	25.5	30
	22.5	27	1475	48	0.7	3.4	5.5
LY40-400	22.8	36.5	1475	41	0.65	5.5	7.5
LY50-160	50	35	2950	71.5	2.3	6.7	11
	25	8.8	1475	68.5	0.8	0.9	1.5
LY50-200	60	52	2950	68	2.6	12.5	18.5
	30	13	1475	65	0.9	1.6	2.2
LY50-250	67	87	2950	68	2.5	23.4	30
	33.5	21.8	1475	64	0.7	3.1	4
LY50-315	84	120	2950	65	2.8	42.3	55
	42	30	1475	61	0.8	5.6	7.5
LY50-400	51	48.5	1475	53	0.8	12.7	18.5
LY80-160	95	32	2950	78	3.3	10.6	15
	47.5	18	1475	74	1	1.4	2.2
LY80-200	100	56	2950	76	3.5	20.1	30
	50	14	1475	74	1	2.6	4
LY80-250	123.5	82.2	2950	73	3.8	37.9	45
01111	61.8	20.6	1475	72	1	4.8	7.5
LY80-315	133.7	127.4	2950	69	4	67.3	75
U	66.9	31.9	1475	66.5	1.2	8.7	11
LY80-400	84	46.8	1475	60	1.1	17.9	22
LY100-160	150	30	2950	80	4.5	15.3	22
	75	7.5	1475	77	1.2	2.0	3 1
LY100-200	180	50	2950	80.5	4.5	30.5	37
	90	12.5	1475	78.5	1.2	3.9	5.5
LY100-250	220	80	2950	81	5.3	59.2	75
	110	20	1475	79	1.4	7.6	11
LY100-315	250	130	2950	76	5.8	116.5	132
17/4 00 400	125	32.5	1475	74	1.5	15.0	22
LY100-400	150	48	1475	71	1.6	27.6	37
LY150-200	320	44	2950	83.5	7.2	45.9	55
	160	11	1475	82	2	5.8	7.5
LY150-250	380	75	2950	82.5	7.6	94.1	110
	190	18.8	1475	80.5	2.2	12.1	18.5
LY150-315	424	130	2950	81	8 2	185.4	220
IV1E0 400	212	32.5	1475	79		23.8	30
LY150-400	260	51.3	1475	77.5	2.4	46.9	55 160
LY200-250	600	72.5	2950	84.5	9.8	140.3	160
V	300	18	1475	83.5	2.5	17.6	22
LY200-315	710 355	122 30	2950 1475	85	9.7 2.5	277.7 34.5	315 45
				84			
LY200-400	425	50.8	1475	81	3.4	72.6	90

V-FL

XI. LY Series Performance Curves

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)							
LY25-200	2950	40	25							
H(m) = 0209 60 198 60 60 60 60 60 60 60 6	5 20 25 30 35	40 rl%	(ft) 							
50 <u>40180</u> 40 <u>40160</u> 30 <u>40130</u>										
20 = P(kW) 7		35	_60							
6 3 4 3 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Φ1 Φ180 Φ130	98 - 7 -6 - 5 - 4 - 3 - 2							
NPSH(m)										
4 3 2 1 0		Ф130	- 12 - 9 - 6 - 3 - 0							
0 4 8 12 16 20 Q(m²/h)										
. (1DS & SYS 1									
Type of Pump	Speed (r/min)	Suction Nozzle Discharge Nozzle (mm) (mm)								

	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
. 0	LY40-160	2950	80	40
V-FLO				
11-1	H(m) 40 Ф169 3			(ft)
V	35 <u>Ф</u> 158	1 7 7 75	- \$0 	120
	" 			- 110
	30 0 140	 		
				90
	25 <u>Ф</u> 125	 	1777 11111	70
	l '' ∃ 		\$\\\ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	_60
	15			50
	l <u> </u>	 		
	P(kW)			8 (hp)
	5			0169 7
	4 3 3	 	1 0158	;+++6
	3			
	1 3 1 4		Φ140 Φ125	1111114
			1117 	
	1 1 1 1 1 1			THE 1. 1
	i 	++++++		1111 0~
	NPSH(m)			(ft)
	6 4.5	 	φ125	20
	4.5 <u>1</u> 1.5 <u>1</u> 0			_10
	1.5		///////	5 0
	0 1	8 16	24 32	40 Q(m³/h)
	V	_		

	1				
Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)		
LY50-200	2950	80	50		
H(m) 64 64 6203 69 60108 52 60108 603 604 604 604 605 605 605 605 605	30 40 45 50 55	60	(ft) 210 200 190 180 170 160 150 150 120 110 100 (hp) 20 20 81 161 172 173 174 175 175 175 175 175 175 175 175 175 175		
NPSH(m) 4.5		*	(ft)		
3.5		Φ170	_10		
0	15 30	45 60	75 Q(m³/h)		

	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
	LY50-200	1475	80	50
V-FLO	H(m) 16			(ft)
1-1-	0209 20 0198 13	30-35-40-45-50-55	50-62 n%	50
	13 0185			40
	 			35
	10 0170		60	_30
	7		- 55	_25
	P(kW)			(hp) Φ209 2.4
	1.8 1.5 1.2		018	Φ198 L 2.1
	0.9		Φ170 T	1.5
	0.6 0.3			0.9 0.6 0.3
	0			
				$\Box b_1$
	NPSH(m)			(ft)
	1.5	++++++	0170	6
	1.0			4
	l 	 	// 	
	0	8 16	24 32	40 Q(m³/h)

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)	
LY50-250	1475	80 50		
H(m)	1475		(ft) 90 85 80 75 70 66 60 55 45 40 (hp) 3.5 3.0 2.5 1.0	
			2.0 1.5 Q(m³/h)	
0	10 20	30 40	50 5	

Type of Pump	Speed (r/min)	Suction Nozzle Discharge No (mm) (mm)				
LY50-315	2950	100	50			
H(m) 145		63	(ft) -480 -440 -400 -360 -320 -280 -240 -200 -200 -21 -55 -45 -45 -45 -45 -45 -45 -45 -45 -45			
0	25 50	75 100	125			

	Type of Pump	Speed (r/min)		Suction Nozzle (mm)	Discharge Nozzle (mm)
	LY50-315	1475		100	50
. 0		1 14/3		100	
V-FLO	H(m)				(ft)
11-1-	38 <u>a</u> n324		Ш		125
V	34 D 315	45 50	55		115 110
*	l 3 	7 7 7 7	X	160 In% I	
		/ 	//		
	26 0280	+++++	Ш		85 80
	22				75 70
		 	Ш	 	
	18				_55
	I		Н	$++\uparrow+++$	0324 8 315 -7
	P(kW) 7		ш		10 ^(np)
	6		Н	 	Φ324 8 315 7
	4			Ф280_	<u> </u>
	7 6 3 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4			Φ250	6 4 3 2 1
			Ш		
	I ○ ᠯ 		Н		
			Ш		\square \square \square
	NDCU()		Н		1110 1
	NPSH(m) 1.0		Ш		Φ250-Φ3241.4 1.2
	0.8		Н		1.0 1.0 0.8
	0.6				0.8
	l 	- 	Н		Q(m³/h)
	0	12 24	, , ,	36 48	60 (m²/n)
	<1.	rr			
		-			

					_									_								_					
Type	of	Pu	m	р					pe /n							Di	scl		rge mr	e Nozzle m)							
LY80	0-1	60			T			:	14	75				100					T	80							
- '																											
H(m)	.	69		<u> </u>		<u> </u>		_													_		_			1	(ft)
9		69	П	7	30.	Ź	Ž	Z-5	Ž	5-	60	7	5	L	ZC						E		E	Ħ		E	_31 _30 _29
8	ďΞ	58	Ш	Ш	1	1	1	7	Ш	Ł	Н	$^{+}$		7		71	1	1	1/	Ľ	74.	η%	H	Н	Н	H	28 27 26 25 23 23 22 21 20 19 18 17 16
4	01	55	7		\forall	\vdash	F	\not	H	Ш	Н			1	//	4	ľ	Ш		Z	\vdash	4	K	H		F	25 24
7	001	40	Ĺ	П	L	Ц		L	I		Ī	Ш		E	И	11	L	11	1	И	$\perp I$	L	Z	Ž	72.		<u>−23</u> 21
6	┢	H	H	H		H	H	H	Ė	Н	Ħ	1	H	H	И	\perp	4	//	Λ	γ	K	ř	H	H	H	H	<u>-20</u> 19 18
5	F		Ш				F	Е	П	П				F	Ш			//	И	7	Ш	Е	Е	Е			= 17 16 16
_=	L						E														Е	E	E				_15
P(kW)	-		H	H		H	L	H	H	Н	H			H	H	H	H	H	H		H	H	H	H	H		(hp)
1.6	Ļ		Ш				E	Е						F	Ш				Ш			L		Ę	01	60	22
1.4						Ь	L	Н						L	Ш	Ш	Ш	Ш	Ш		L		0	158		Ľ	2.0 1.8 1.6
1.0	┡		H	L	Ь	F	F	H	-	Ε	H	Н	Ш	L	\vdash	L	Ш	Ш	1	F	014	Φ1 10	55	Н		Ł	_1.4 _1.2
0.6 _			ı	Ц	Ш	E				Ш	Ш	Ш	Ш	E	Ш	М	II.	П	Ė	Ц	F			Ľ			_1.0 _0.8
0.4 0.2	E		Ш	Ш	И	И	-	F	И		-	-	1	t	7	V	Н	1	F		È	Н	Н	Н	Н	Н	_0.6 _0.4 _0.2
	H					L	L				Н	H	_	Ŋ	Д.	2					L	L	L			H	F ^{0.2}
			П	L		9	ď	Ħ		I		ħ	1	Ė	П				П		╘	L	E	E		E	1
NPSH(m) 1.25_	4			ľ	k	Н	-	+	-	1	Н			H					Н	۲	\vdash	H	Н	H	01	69	(ft) 4
1.00	F	H		Ţ	Р	Ľ	F	Е									-1	$\sqcup N$	Ш	2	14	ř	P				 _3
0.75 0.55		-				Ŀ	E	E	E	Ε	E	E		L	1								L	E			_2
<i>)</i>	H	H	Н	H	-	⊦	┝	Н	Н	Н	H	H	H	H	Н	-	-	-	Н		⊦	┝	⊦	Н	H	┝	_1 Q(m³/h)
	0				1	2	_			2	4			_	3	6				4	8	_	_		6	0	ec(iii /ii)

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY80-200	2950	100	80

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)						
LY80-250	2950	100 80							
H(m) 100	40.49 50 55 50	0 65 67 20 1% 3 3 70 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							
40 30 30 30 30 30 30 30 30 30 30 30 30 30		0.1	0239 50 0230 40						
NPSH(m) 6 3 4 3 4 3 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30 60	90 120	0 0 59 15 15 10 10 150 150 150 150 150 150 150						
Type of Pump Speed Suction Nozzle Discharge Nozzle									

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)		
LY80-250	1475	100	80		
H(m)	10 4045 50 55 60 10 4045 50 55 60	++77417	(ft) _80 _75 _70 _65 _68 _50 _66 _45 _02,59,7 _70 _70,30 _73 _70,30 _74 _70,30 _74 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30 _75 _70,30		
NPSH(m) 1.5 1.0 0.5	15 30	45 60	0259 5 4 3 3 3 1 1 1 1 1 1 1 1		

	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
. 0	LY80-315	2950	100	80
V-FLO	H(m) 145	40/45/50 55 60	100 65	(ft) 500 450 450 400 350 300 250 (hp) 1100 90 80 70 60 50 40 100 100 100 100 100 100 100 100 100
	"\ -		100	200

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY100-160	2950	100	100
H(m) 35	40 50 55 60 6	76 - 10 77	13(ft) -120 -110 -100 6 90 -80 -70 -60 -50 -40 -30 -(hp) -22 -0169 -20 -18 -16 -14 -12 -10 -8 -6 -4 -4 -4 -4 -4
NPSH(m)		Φ125	Φ169 25 20
6 4 2 2			20 -15 -10 -5 -5 Q(m³/h)
0	40 80	120 160	200

	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
	LY100-160	1475	100	100
41 ()				
V-FLO	H(m) 9 0 169	40 50 60		26 25
1-1	8 0158		65 70 75 n%	
	8 d 0158 7			22 21 20 19 18 17 17 17 114 13 114 119 110 19 10 10 10 10 10 10 10 110 110
	6 10140			17 16 15
	5 0125		770	13 12 11
	4			
	P(kW)			(hp) Φ1693.0 2.8
	I 10 ≣ I I I I			2.6
	1.7 1.5 1.3		0 140	2.2 2.0 1.8
	1.1 0.9		Ф125	1.6 -1.4 -1.2 -1.0
	0.7 = 1 + 1 + 1			1.0
	NPSH(m)			(ft)
	2 1.5		φ125	0 169 6 5 4
	1.5 1 0.5 0			
		20 40	60 80	100 Q(m³/h)
	11-	ru		
l	4/1			

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY100-200	1475	100	100
H(m) 14	0=50.55-60 r.65 - 70	70-	100
0.5 NPSH(m) 2 1 0 0 0 0	25 50	φ160 75 100	(ft) -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7
	25 50	.5 100	CM2

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY100-250	2950	150	100
H(m)	2950	5 78 n%	
	60 120	180 240	Q(m³/h) 300

	-11W	(r/min)	(mm)	(mm)
	LY100-250	1475	150	100
V-FLO	H(m)			(ft)
1-11-	22 = 0.259	10_50_55_60_65-70	75-77	77
	P(kW)			(hp)
	9 8 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		ф230 Ф205	Φ25911 10 9
	NPSH(m)			(ft)
	2.5 2 <u>1</u> 1.5 <u>1</u>		0205	0259 -8 7 6 5 5 -4 3 3 Q(m³/h)
	0	30 60	90 120	150

Suction Nozzle Discharge Nozzle

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY100-400	1475	150	100
H(m) 55 10397 45 10360 40 315 10260 30 11 10 15 10 15 10 10 10 10 1	40 50 55 60	55 69 11% 71 71 71 71 71 71 71 71 71 71 71 71 71 7	(hp) (403 40 40 40 40 40 40 40 40 40 40 40 40 40
NPSH(m) 2.2 1.8 1 1.4 1		0260	0409——7 —6 5
1.0			6 5 4 3 Q(m³/h)
0	40 80	120 160	200

		(r/min)	(mm)	(mm)
	LY150-200	2950	150	150
V-FLO	EY150-200 H(m) 50	2950 -50:55:60:65 -71:77:75:55:50:55 -71:75:75:55	, ,	150 (ft) 170 160 150 140 130 120 110 100 90 80 (hp)
	NPSH(m) 11 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 200	g 20s g 170 300 400	-10

Suction Nozzle Discharge Nozzle

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY150-250	2950	150	150
H(m) 90	40 50 60 65 70	75 80 11% 82.5	
70 30 220 60 3 50 5 0 3 50 4 50 5 0			240 220 200 180 75 160
P(kW) 120 100 80 60 40			(hp) 160 0259 140 120 100 80 60
60 40 20 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
9 8 7 6 6		Φ220	30 25 25 20
0 1	100 200	300 400	500

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY150-250	1475	150	150
H(m) 23 <u>0259</u> 21 <u>1</u>	4550 55 60 65 7	75	(ft) -75 -70
19 <u>0240</u> 17 <u>0220</u> 15 <u>1</u>		78 11/2	65 60 55 50
13 P(kW)			45 40 (hp)
14 12 10 10 10 10 10 10 10 10 10 10 10 10 10		φ220	- 0259 - 18 - 16 - 14 - 12 - 10 - 8 - 6 - 4
2 I			(ft)
2.6 2.4		(0220	- 0259 - 8.5 - 8.0 - 7.5 - 7.0 - 6.5 - 6.0
0	50 100	150 200	Q(m³/h) 250

			~151	
		c &1.	510	
	1771	ps &		
. 0	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
V-FLO	LY150-315	2950	150	150
11-12				
	P(kW) 230 200 110 80 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 110 90 90 90 90 90 90 90 90 90 90 90 90 90	50 55 60 65 70		(ft) 500 450 400 77 350 300 250 (hp) 315 240 210 315 240 150 315 240 150 360 600 (ft) 600 600
	0 1	120 240	360 480	600

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY200-250	2950	200	200
H(m) 90	40 505560.55	84	300 280 0% 260

	< 1 IVI			
. 0	Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
(1) U	LY200-250	1475	200	200
V-FLO	17	40 50 55 60 65 70 75 40 50 55 60 65 70 75 40 60 60 60 60 60 60 60 60 60 60 60 60 60	\$10	

Suction Nozzle

Speed

Type of Pump	Speed (r/min)	Suction Nozzle (mm)	Discharge Nozzle (mm)
LY200-315	1475	200	200
LY200-315 H(m) 34	1475	20 82 h% 84 h 80 80 80 80 80 80 80 80 80 80 80 80 80	200 (ft) 1.20 1.10 1.115 1.10 1.00 1.00 95 90 82 85 80 75 70 65 60 65 55 55 56 60 36 315 44 40 36 36 32 48 315 48 40 40 316 112 (ft) 61 61 61 61 61 61 61 61 61 6
1 4			Q(m³/n)
0 1	100 200	300 400	500

							1													
Pump type	MOTOR	В	B1	B2	T	11	[2]	13	4	12	Ф	4	I	H1	Н2	Н3	Н	H5	9н	¥
	YB3-132S						Y	C					645	5315						207
	YB3-112M						U	11					, 369	4915						452
000 100	YB3-100L	5	0	7.7	000	Ç	0,70	, L	,	, L		2		4315	1	Ç	5			440
L123-200	YB3-90L	200	430	401	06/	730	040	P	077		10	067	615	3865	662		3	 C		377
1	YB3-90S													3265						352
,	YB3-80M							7						2655	+					322
	YB3-132S								2,				645	2360						202
	YB3-112M								S				625	4960						452
1740-160	YB3-100L	200	450	218	730	070	340	7,	220	125	ŏ	325		4360	285	5	120	7,	150	440
00101	YB3-90L		2	010	2	0	5	2	77	7) }	615	3910	707	}	140		3	377
	YB3-80M								-	T			909	2710						322
	YB3-71M									E			262	2110						284
	YB3-160M									V			675	5370						642
	YB3-132S	21											645	4970						202
1040-200	YB3-112M	G	450	510	730	070	340	25	020	175	00	330	625	4370	205	7	120	7,	150	452
70-70-70-70-70-70-70-70-70-70-70-70-70-7	YB3-100L		2	010	2	2	2	3	077	C 9 T				3920		}	140			440
	YB3-90L	5	ar								7		615	2720						377
	YB3-90S		C 1								1			2120						352
	YB3-160L		F.								Y	0	725	2390						672
	YB3-160M		M								<u>L</u>	Δ		4990						642
1740-250	YB3-132S	780	530	537	860	335	405	ንር	280	140	, X	25 75	692	4390	300	40	100	,	750	202
L140-230	YB3-112M	2	200	355	3	2	P	3	207	2		J	675	3940	3	-	3		3	452
	YB3-100L		<u>ァ</u>	٦(3340						440
	YB3-90L)[2740						377
	YB3-132S			V								<u> </u>	695	5410						202
1740-215	YB3-112M	000	0	Y	000	0	7,7	Ľ	000	,	0		675	5010	0	Ç	5	, 1	0	452
010	YB3-100L	000	000	1,1	3	000		67	700	140		5	1	4410	250	5	3			440
	YB3-90L			- 1	N							<u> </u>	999	3960						377
000	YB3-160M	0	i i	G G	.1	0	I.	ı	0	0			705	5430 5030		Ç	0		(642
LY40-400	YB3-132M	90	920	720	80	0 1	465	57	300	150	18	440	685	4430	340	04	170	ç ₇	150	542
						ITI														
						シレ	1													

V-FI

		•																		
Pump type	MOTOR	æ	B 1	B2	_	[1]	7	ខា	4	5	Ф	4	I	H	Н2	£	H	¥	9Н	¥
	YB3-160M)	4					675	5370						642
	YB3-132S						r	1					645	4970					•	202
LY50-160	YB3-112M	200	450	538	730	270	340	45	220	125	18	350	625	4370	295	40	120	25	150	452
1	YB3-100L							M						3920						440
-F	YB3-90S							F					615	2720					·	352
()	▲ YB3-80M												605	2120						322
	YB3-160L								9				675	5380						672
	YB3-160M								21.					4980						642
LY50-200	YB3-132S	200	450	540	730	270	340	25	220	125	18	350	645	4380	305	40	120	25	150	507
	YB3-112M))))) İ)	ì	Y))	675	3930)	2))	452
	YB3-100L								J	C1			020	3330						440
	YB3-90L								-	7			615	2730						377
	YB3-200F									E				5405						962
	YB3-180M									V			L	5005						687
9	YB3-160	0-	(1	((į		1	- (,	725	4405	(((ļ		672
LY50-250	YB3-160M	280	530	550	860	325	405	22	280	140	18	310		3955	320	40	100	52	150	642
	YB3-112M	Y											ļ	2755					•	452
	YB3-100L	S	-1								01		6/2	2155					•	440
	YB3-132M	1									V			5425						542
1	YB3-132S		T	1	Ö	C	Ĺ	Ĺ	0		IT		695	5025	L L	Ç	0	Ĺ	, ,	507
LY50-315	YB3-112M	930	28	5/9	900	350	472	57	780	140	ΣI	430	3/3	4425	355	40	100	57	T20	452
	YB3-100L		S									N	0/0	3975						440
	YB3-180L		U									Y	735	5430						707
LY50-400		700	650	753	1000	380	475	25	320	160	18	500	1	5030	370	40	100	25	150	
	YB3-180M			M									305	4430						289
	YB3-160L			Y									120	5405						672
	YB3-160M			P	۸.								(27)	5005						642
180-160	YB3-132S	780	530	580	260	310	705	75	280	110	8	380	695	4405	320	70	125	75	150	507
	YB3-112M	200		200		010	j	3	707	1	9	200	675	3955	750	†	CT	3	2	452
	YB3-100L												5	2755						440
	YB3-90L				1	1							665	2155						377
					1,,	M														
						17														
						E	_1													
						V														

	9 /	2 2	2 0	2	ر ا	2 2	_	2 2	7	ι,	,			7 2		0 2	ی ا		2 .	7 7	, 2]	
~	796		452	915	837		207	642	507	962		707	687	642		377	796	687		507	452		
9H		150			150			150			150			-	OCT				150				
£		25			25			30			30			ייר	C7				25				
Ŧ 4		135			135			100			135			137	177				135				
£		40			40			40			40				00				20				
H2		320			320			380			400			7	040				330				
Ŧ	5410	4410	2760	5415	5015	3965	2165	5470	4470	5480	2080	4480	5433	4433	3983	2783	5415	5015	4415 3965	3365	2765	 - -	
I	775		675	755	725	695	845	815	795	905		875	775	1	695	675	1	765		735	715		
4		400			430			480			520	o A	N	450	2				410				
Ф		18			18			18	C		18	1,		ζ.	2				18				
5		140			140	TE	N	140			160			140	2				140				
4		280	. 21	S	280)		320			340			280	2				280				
13	11V	12			25			25			25			25	3				25				
)2 ^k		405			425			460			475			101	472				425				
1		310			325			360			380			305	coc				305		11	[T]	ムレ
_		860			900			970			1000			ç	006			N	900		Ir.		
B2		909			655			738			260				700	NF			637				
B1		530			580			280		25	650	GN	S		000				280				
8		280			630			089	5Y	S	700			000	000				630				
MOTOR	YB3-200L YB3-180M	YB3-160L YB3-160M	YB3-112M YB3-100L	YB3-250M	YB3-225M YB3-200L	YB3-180M YB3-132W	YB3-132S	YB3-160M YB3-137M	YB3-132S	YB3-2001		YB3-180L	YB3-180M	YB3-160M	YB3-132S	YB3-100L YB3-90L	YB3-200L	YB3-180M	YB3-160L	YB3-1325	YB3-112M	1 1 1 1 1	
Pump type	V	LY80-200			LY80-250			LY80-315			LY80-400			0077	L1 TOO-TOO				LY100-200				

V-FL

H4 H5 H6 K	OFO	34 25 150 837 796 642 642	30 150	30 150	30 150	25 150 837 915 642 642 642 642 687 642 687 642 687 642 687 837 837 837 837 837 837 837 837 842 687 687 687
Ê	50 134 25		50 100 30	50 100 30 50 135 30	50 100 30 50 135 30 75 128 25	50 100 30 50 135 30 75 128 25 75 100 30
51	365 50		390	390	365	365 400 400
795 5451	765 4001 3401 735 2801	845	2230	875 845	845 - 845 - 795 735 - 735	845 845 765 765 785 845 845
	18 485	18 545		18 590	TAPPI	
	30 140	15 ⁴ 1		1997		
1	12 8 2 280 12 280	25 320		25 340		
	460	550		540	540	540
	340	0 375		0 400		
	970	5 1050		7 1130		
	0 738	0 835		0 887	4C	(10)
	280	0 610		0.0	100	100
· · · · ·	YB3-280S YB3-250M YB3-225M YB3-200L YB3-160M YB3-132M	YB3-180L YB3-180M YB3-160L	YB3-160M	YB3-160M YB3-225W 720 YB3-225S	121 2 1	- XJ. P - - - - - - - - - -
Pump type	LY100-250	LY100-315		LY100-400		

V-FLO

1-								1												
Pump type	MOTOR	ω	81	B2	_	11	77	P _m >	41	5	Ф	⋖	I	抂	Н2	Н3	H	H5	9H	~
LY150-315	YB3-200L YB3-180L YB3-180M YB3-160L	720	670	912	1200	385	575	25	320	140	18	580	845	4040 3440 2840 2240	400	75	100	30	150	796 707 687 672
LY150-400	YB3-280S YB3-250M	770	720	866	1250	415	009	25	350	160	18	009	905 -	5515 4915 4515 3915	400	75	128	30	150	970
LY200-250	YB3-315L YB3-315M YB3-315S YB3-280M YB3-180L YB3-180M	SYE	670	1056	1200	340	575	25	320	140	COMP	705	945 -	5525 5125 4525 4075 3475 2875	430	95	100	30	150	1290 1190 1025 707 687
LY200-315	YB3-225M YB3-225S YB3-200L YB3-180L	760	\S ₀ 12	1107	1300	385	625	25	320	140	18	735	945 -	5530 5130 4530 4080	440	95	105	30	150	837 807 796 707
LY200-400	YB3-315S YB3-280M	800	750	1190 1380	1380	420	999	25	350	160	18	750	955 -	5545 5145 4545 4095	450	100	128	30	150	1240
				, •	1X FILL	JY LIMITED	4 D													

V-FLO PUN

