Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue

Zhenjiang Liu | Lu Gan | Yatao Xu | Dan Luo | Qian Ren | Song Wu | Chao Sun

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China

Abstract
Pyroptosis is a proinflammatory form of cell death that is associated with pathogenesis of many chronic inflammatory diseases. Melatonin is substantially reported to possess anti-inflammatory properties by inhibiting inflammasome activation. However, the effects of melatonin on inflammasome-induced pyroptosis in adipocytes remain elusive. Here, we demonstrated that melatonin alleviated lipopolysaccharides (LPS)-induced inflammation and NLRP3 inflammasome formation in mice adipose tissue. The NLRP3 inflammasome-mediated pyroptosis was also inhibited by melatonin in adipocytes. Further analysis revealed that gasdermin D (GSDMD), the key executioner of pyroptosis, was the target for melatonin inhibition of adipocyte pyroptosis. Importantly, we determined that nuclear factor κB (NF-κB) signal was required for the GSDMD-mediated pyroptosis in adipocytes. We also confirmed that melatonin alleviated adipocyte pyroptosis by transcriptional suppression of GSDMD. Moreover, GSDMD physically interacted with interferon regulatory factor 7 (IRF7) and subsequently formed a complex to promote adipocyte pyroptosis. Melatonin also attenuated NLRP3 inflammasome activation and pyroptosis, which was induced by LPS or obesity. In summary, our results demonstrate that melatonin alleviates inflammasome-induced pyroptosis by blocking NF-κB/GSDMD signal in mice adipose tissue. Our data reveal a novel function of melatonin on adipocyte pyroptosis, suggesting a new potential therapy for melatonin to prevent and treat obesity caused systemic inflammatory response.

KEYWORDS
adipocyte, GSDMD, inflammasome, melatonin, NF-κB, pyroptosis

1 | INTRODUCTION
Obesity has become a public health epidemic worldwide and is associated with adipose tissue inflammation. Dysfunctional adipose tissue with low-grade, chronic, and systemic inflammation links the metabolic and vascular pathogenesis including type II diabetes and cardiovascular disease.1,2 Studies reveal that hypertrophic adipocytes are immunologically active and capable of activating inflammasome pathways during the chronic inflammation.3–5 Recent evidences demonstrate that activation of inflammasome pathways triggers pyroptosis and results in the extracellular release of inflammatory cytokines.6,7 Thus, these findings provide a new potential means for the regulation of inflammasome and pyroptosis in adipocytes to prevent obesity and other chronic inflammatory diseases.

Melatonin (N-acetyl-5-methoxytryptamine) is synthesized by the pineal gland and other organs and maintains...
circadian rhythm in mammals. Melatonin is involved in a wide range of other physiological functions, including antioxidant, anti-inflammatory, immunomodulatory, and vasomotor effects. Our previous study also confirms melatonin promotes proliferation through regulating circadian rhythm in adipocytes. Moreover, studies demonstrate that melatonin ameliorates low-grade inflammation and oxidative stress by repressing the inflammatory response in brain and peripheral tissue. Inflammasomes are a group of protein complexes including NLRP3, NLRC4, AIM2, and NLRP6. Moreover, inflammasome functions as a sensor to detect danger signals and induce secretion of potent pro-inflammatory cytokines that contribute to obesity-associated chronic inflammation conditions. Recent studies suggest that melatonin attenuates inflammatory response by inhibiting activation of inflammasome in brain and lung injury. However, the effects of melatonin on inflammasome of adipocytes during peripheral adipose inflammation remain elusive.

Pyroptosis is an inflammatory form of regulated cell death that relies on cytosolic inflammasome activation. For a long time, pyroptosis has been misclassified as a special type of apoptosis in monocytes in response to certain bacterial insults. However, recent studies demonstrate that pyroptosis is emerging as a general innate immune effector mechanism in various cell types. Pyroptosis can be triggered by various pathological stimuli, such as microbial infection, stroke, heart attack, or cancer. Moreover, Giordano et al. determine that obesity could induce NLRP3-dependent Caspase1 activation and triggers pyroptosis and proinflammatory response in hypertrophic adipocytes. Although several studies reveal the beneficial actions of melatonin on obesity and adipocyte inflammation, the effects of melatonin on pyroptosis in adipocytes are still unknown.

In this study, we investigate the effects of melatonin on inflammasome activation and pyroptosis of adipocytes. We further tested the hypothesis that melatonin could alleviate pyroptosis through the inhibition of NF-κB/GSDMD signals in mice adipose tissues.

2 MATERIAL AND METHODS

2.1 Animal experiment

Eight-week-old C57BL/6J background male mice were purchased from the Laboratory Animal Center of the Fourth Military Medical University (Xi’an, China). The use of the animals and mouse handling protocols were conducted following the guidelines and regulations approved by the Animal Ethics Committee of Northwest A&F University (Yangling, Shaanxi). Mice were housed as 2-5 per cage and provided ad libitum with water and a standard laboratory chow diet. The animal room was maintained constant temperature at 25±1°C and humidity at 55±5%, and 12-h light/12-h dark cycles. The mice used for lipopolysaccharide (LPS) challenged and diet-induced obese were maintained in the same condition.

The mice (n=24) were randomly divided into four groups using a 2×2 factorial design. Half of the mice were intraperitoneally injected with phosphate-buffered saline (PBS) (vehicle), and the other half received a daily intraperitoneal (IP) injection of a 200 μL solution consisting melatonin (MT, 20 mg/kg; Sigma-Aldrich, St. Louis, MO, USA) in PBS before the dark onset for 14 days. For the LPS-challenged experiment in vivo, half of the mice that received the PBS or MT injection were challenged via intraperitoneal (ip) injection with the indicated quantities of LPS (75 μg/kg, Sigma-Aldrich, St. Louis, MO, USA) in PBS for 24 hours. Mice were sacrificed by overdose ethyl ether within two hours after the last injection of melatonin or the vehicle. Immediately, the epididymal white adipose tissue (eWAT) was dissected and kept for the studies as follows.

For diet-induced obesity, mice were placed on high-fat diet (HFD; fat provides 60% of the total energy) for 10 weeks, while control mice were fed with a standard chow diet (fat provides 10% of the total energy). Body weight and food intake of mice were recorded weekly. Mice were then euthanized by ethyl ether. The epididymal white adipose tissue (eWAT) was dissected and kept for the following studies.

2.2 Primary adipocyte culture and reagents treatments

The connective fiber and blood vessels in collected eWAT tissues were removed, and the tissue was washed three times with PBS buffer containing 200 U/mL penicillin (Sigma-Aldrich, St. Louis, MO, USA) and 200 U/mL streptomycin (Sigma, St. Louis, MO, USA). The pre-adipocyte culture was carried out according to our previous publication. Briefly, adipocytes were seeded onto 35-mm culture dishes at 30% (v/v) confluency and incubated at 37°C under a humidified atmosphere of 5% CO₂ and 95% air until confluence. Differentiation of pre-adipocytes was performed as follows. Cells grown to 100% confluence (Day 0) were induced to differentiation using DMEM/F12 medium containing dexamethasone (1 μM, Sigma, St. Louis, MO, USA), insulin (10 μg/mL, Sigma, St. Louis, MO, USA), IBMX (0.5 mM, Sigma, St. Louis, MO, USA) and 10% FBS. Four days after the induction (from Day 2), cells were maintained in the induction medium containing insulin (10 μg/mL, Sigma, St. Louis, MO, USA) and 10% FBS. Melatonin (MT, Selleck.cn, Shanghai, China) was pre-added into culture medium at a final concentration of 1 μM for 14 hours and further stimulated with LPS (200 ng/mL) for another 10 hours. Z-DEVD-FMK (Selleck.cn, Shanghai, China) was added into the culture medium at a final concentration of 50 μM for 24 hours.
For virus vectors study, adipocytes were infected with interference lentiviral recombinant vectors of GSDMD (si-GSDMD), Caspase1 (si-Caspase1), NLRP3 (si-NLRP3), or IRF7 (si-IRF7) for 48 hours at the titer of 1×10^9 IFU/mL and then treated with melatonin. The control vector was pGLVU6-GFP. All the vectors were constructed by Gene Pharma (Shanghai, China).

2.3 | Enzyme-linked immunosorbent assay

The measurement of protein levels of IL-1β, IFN-γ, and IL-6 in cell culture supernatants or mouse sera was taken using the commercial ELISA kits from Sigma (Sigma-Aldrich, St. Louis, MO, USA) according to the manufacturer’s instructions.

2.4 | RNA-seq analysis

Total RNA from epididymal adipose tissue (eWAT) was prepared with TRIpure Reagent kit (Takara, Dalian, China) and the RNA-seq analysis was performed as previously described. Briefly, quantification and quality control of the sample libraries were assessed by Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-time PCR System. RNA sequencing was performed using Hiseq 4000 instrument (Illumina, San Diego, CA, USA). Real-time analysis was used for base calling. Fastq files were mapped to the mouse genome (NCBI37/mm9) using TopHat (version 2.0.4, Johns Hopkins University, Baltimore, MD, USA). Mapped reads were then assembled via Cufflinks (version 2.0.2, University of Washington Seattle, WA, USA) with the default settings. Assembled transcripts were then merged using the Cuffmerge program with the reference genome. Analysis of mRNA levels was carried out using the Cuffdiff program, with samples being grouped by treatment condition, three replicates per group. Volcano plots comparing log10 (statistical relevance) to log2 (fold change) were generated using R (version3.1.1, AT&T Bell Laboratories, New York, NY, USA), using the base plotting system and calibrate library. Gene Ontology (GO) and pathway enrichment analysis were performed to categorize the considerably enriched functional classification or metabolic pathways in which DEGs operated.

2.5 | Measurement of Caspase1 and Caspase3 activity

Caspase1 and Caspase3 activities were determined using a Caspase-Glo® 3 Assay Systems (Promega, Madison, WI, USA) and Caspase-Glo® 1 Inflammasome Assay (Promega, Madison, WI, USA) according to the manufacturer’s instructions. In brief, cells were seeded in 96-well plate. After treatment, equal volume of Caspase-Glo 3 or 1 reagent was added to the cell culture medium, which had been equilibrated to room temperature for 1 hour, cells were shook for 5 minutes and incubated at room temperature for 30 minutes. Luminescent recording was performed with Victor X (PerkinElmer, MA, USA).

2.6 | Cytotoxicity assay

Relevant adipocytes were treated as indicated. Cytotoxicity was determined by measuring the release of lactate dehydrogenase (LDH) using the CytoTox 96 Non-Radioactive Cytotoxicity Assay kit (Promega, Madison, WI, USA) following the manufacturer’s instructions.

2.7 | Immunofluorescence assay

Immunofluorescence analysis was performed as previously described. The cells were treated as indicated and followed fixed with 4% paraformaldehyde and then blocked with 5% bovine serum albumin (BSA) in PBS for 1 hour at room temperature. The cells were then incubated with rabbit polyclonal anti-ASC primary antibody (Abcam, Cambridge, UK) and anti-P65 antibody (Abcam, Cambridge, UK) at a dilution of 1:50 overnight, followed by incubation with fluorescein isothiocyanate-conjugated goat anti-rabbit IgG antibody (Boster, Wuhan, China) for 1 hour at room temperature. DAPI was used for nuclear staining. Finally, cells were observed and photographed using a Cytation3 Cell Imaging Multi-Mode Reader (BioTek, Winooski, VT, USA).

2.8 | Cell death analysis

Adipocytes were incubated for 30 minutes with Hoechst 33342 (Solarbio, Beijing, China) loading dye and washed three times with ice-cold PBS. Mid-stage and late-stage apoptosis of adipocytes were assayed using Annexin V-FITC/PI apoptosis detection kit (Beyotime Institute of Biotechnology, Nanjing, China) following the User Protocol. Terminal deoxynucleotidyl transferased UTP nick-end labeling (TUNEL) staining was further used to detect apoptosis using the commercial kit from Vazyme (TUNEL BrightGreen Apoptosis Detection Kit, Vazyme, Nanjing, China). The TUNEL-positive cells showed green nuclear staining, and all of the cells with blue nuclear DAPI staining were counted within five randomly chosen fields under high power magnification. The index of apoptosis was expressed as the ratio of positively stained apoptotic cells to the total number of cells counted ×100%. The cells were visualized and analyzed using Cytation3 Cell Imaging Multi-Mode Reader (BioTek, Winooski, VT, USA) and using BD FACScan (BD Biosciences, Franklin Lakes, NJ, USA). Data were analyzed using Cell Quest software (BD Biosciences).
2.9 | Transmission electron microscopy

At room temperature, adipocytes were fixed in 2.5% glutaraldehyde in PBS (pH=7.2) for 24 hours, postfixed in 1% osmium tetroxide in water for 2 hours. After dehydrated in an ascending series of ethanol (30%, 50%, 70%, 80%, 90%, 100%) for 10 minutes each, the samples were then embedded in Durcupan ACM (Fluka Chemie AG, Buchs, Switzerland). Sections were cut with a diamond knife at a thickness of 50-60 nm. These sections were stained with uranyl acetate and lead citrate and examined with a transmission electron microscopy (TEM, HT7700, 80 kV, Hitachi, Tokyo, Japan). Images were recorded on film at 30 000×magnification. The percentage of mitochondrial integrity was determined by dividing the number of normal mitochondria by the total number of mitochondria per image.

2.10 | Plasmids construction and Dual-luciferase reporter assay

A 850-bp mouse GSDMD promoter was cloned by PCR amplification of C57BL/6J mouse genomic DNA and inserted in the pGL-3 basic vector (Promega, Madison, WI, USA). The resulting reporter was named GSDMD₈₅₀-Luc. Further deletion of the GSDMD₈₅₀-Luc generated GSDMD₇₂₀-Luc, GSDMD₂₅₀-Luc, and GSDMD₁₀₀-Luc reporters contained of 720 bp, 250 bp and 100 bp of GSDMD promoter, respectively. Mutant GSDMD reporter plasmids were generated using the GSDMD₇₂₀-Luc plasmid as a template; a mutagenesis kit (Invitrogen, CA, USA) was used to created GSDMD₈₅₀-Luc generated GSDMD₇₂₀-Luc, and GSDMD₇₂₀-Luc-S1, GSDMD₇₂₀-Luc-S2 and GSDMD₇₂₀-Luc-S1, S2 with mutation in the two binding sites of GSDMD promoter. HEK293 cells were cotransfected with luciferase reporter plasmids, pRL-TK reporter plasmid (control reporter), and NF-kB plasmid (pc-NF-kB) using X-tremeGENE™ Transfection Reagent (Roche, Basel, Switzerland). After 24-h transfection, cells were harvested and measured using the Dual-Luciferase Reporter assay system (Promega, Madison, WI, USA), and luciferase activity was divided by the Renilla luciferase activity to normalize for transfection efficiency.

2.11 | Chromatin Immunoprecipitation (ChIP) assay

ChIP assay was performed as previous described using a ChIP assay kit (Abcam, Cambridge, UK) according to the manufacturer’s protocol. In brief, primary antibodies of GSDMD (Abcam, Cambridge, UK) or IgG (Abcam, Cambridge, UK) were used. DNA–protein cross-linking complexes were collected, and purified DNA was subjected to qPCR with SYBR green fluorescent dye (Invitrogen, Carlsbad, CA, USA).

2.12 | Nuclear protein extraction

Nuclear and cytoplasmic fractions were prepared using the protocols from Zhong et al. In brief, cells were lysed with 400 μL of cytoplasmic lysis buffer. The lysates were incubated for 5 minutes on ice and vortexed two times for 10 seconds. The lysates were centrifuged for 30 seconds at 16 000×g, and supernatants were collected as cytoplasmic fractions. The pellets were resuspended in 50 μL of nuclear extraction buffer and sonicated three times on ice. The nuclear fractions were centrifuged for 5 minutes at 16 000×g, and the supernatant was collected to obtain nuclear proteins. The proteins were denatured by boiling at 100°C and kept for further studies.

2.13 | Co-immunoprecipitation (Co-IP) analysis

HEK293 cells were transfected with plasmids using X-tremeGENE™ Transfection Reagent (Roche, Basel, Switzerland). After 24-h transfection, cells were then snap-frozen in lipid nitrogen. Whole-cell lysate was harvested in lysis buffer with a protease inhibitor. Cells were then sonicated for 10 seconds, and the whole-cell lysate was pre-cleared with Protein A for 2 hours and incubated with 2 μg primary antibody overnight at 4°C. Immune complexes were pulled down with Protein A agarose for 2 hours at 4°C with shaking. Beads were washed once with lysis buffer and three times with wash buffer and then eluted by boiling in SDS sample buffer followed by detection of Western blot.

2.14 | Real-time quantitative PCR analysis

Total RNA was extracted from eWAT or adipocytes with TRIPure Reagent kit (Takara, Dalian, China) as previously described; 500 ng of total RNA was reverse-transcribed using M-MLV reverse transcriptase kit (Takara, Dalian, China). Primers were synthesized by Invitrogen (Shanghai, China). Quantitative PCR was performed in 25 μL reaction system containing specific primers and AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing, China). Amplification was performed in the ABI StepOne Plus™ RT-PCR System (ABI, Carlsbad, CA). The levels of mRNA were normalized in relevance to GAPDH. The expression of genes was analyzed by method of $2^{-\Delta \Delta Ct}$.

2.15 | Western blotting analysis

Protein from adipocytes was extracted using lysis buffer according to the protocol from Liu et al. Protein concentration was determined using BCA Protein Assay kit (Beyotime Institute of Biotechnology, Nanjing, China). Proteins (30 μg) were separated by SDS-PAGE, transferred to PVDF...
Figure 1C were virtually all shown by the RNA-seq analysis in Figure 1A. The genes described in (Figure 1C). And the Western blot measurement showed the consistent results (Fig. S1A). The genes were enriched in those encoding factors involved in Gene Ontology (GO) analysis showed the distinct difference, especially, NLRP1 downregulated by melatonin were associated with inflammation. NF-κB signal, NLR signal, and IL signal (Figure 1B). The subsequent analyses revealed signature genes expression differences are grouped and visualized as a Heatmap (Figure 1A). And further analyses revealed signature genes downregulated by melatonin were associated with inflammasome activation; especially, NLRP3, ASC, Caspase1, Cleaved-Caspase1, Caspase3, Cleaved-Caspase3, NF-κB, phosphorylate-NF-κB, and IRF7 antibodies were all purchased from Abcam (Cambridge, UK), and GAPDH from Bioworld (Nanjing, China). Rabbit HRP-conjugated secondary antibody (Baoshen, Beijing, China) was added and incubated at room temperature for 2 hours. Proteins were visualized using chemiluminescent peroxidase substrate (Millipore, Boston, MA, USA), and then the blots were quantified using ChemiDoc XRS system (Bio-Rad, Hercules, CA, USA).

2.16 | Statistical analysis
Statistical analyses were conducted using SAS v8.0 (SAS Institute, Cary, NC). Data were analyzed using one-way and two-way ANOVAs. Comparisons among individual means were made by Fisher’s least significant difference (LSD). Data were presented as mean±SEM. P<.05 was considered to be significant.

3 | RESULTS
3.1 | Melatonin reduces inflammasome activation in white adipose tissue
To explore the effects of melatonin on inflammation, we compared white adipose transcriptomes from vehicle- and melatonin-injected mice. Melatonin treatment resulted in an anti-inflammatory transcriptional signature defined by the downregulation of 3,199 genes when significant gene expression differences are grouped and visualized as a Heatmap (Figure 1A). The subsequent Gene Ontology (GO) analysis showed the distinct difference genes were enriched in those encoding factors involved in NF-κB signal, NLR signal, and IL signal (Figure 1B). The mRNA expression measurement established that inflammasome indicators NLRP3 and ASC were decreased with melatonin injection. In addition, the levels of Caspase1 and IL-1β, the up- and downstream markers of inflammasome, were all reduced (Figure 1C). Interestingly, melatonin injection significantly decreased the expression of GSDMD and IRF7 (Figure 1C). And the Western blot measurement showed the consistent results (Fig. S1A). The genes described in Figure 1C were virtually all shown by the RNA-sequencing (RNA-Seq) analysis in Figure 1A. Additionally, melatonin injection significantly reduced the serum levels of IL-1β, IL-6, and IFN-γ (Figure 1D-F). These findings indicated melatonin affects the inflammasome activation of white adipose tissue.

3.2 | Melatonin blunts LPS-induced NLRP3 inflammasome activation in adipocytes
To further analyze the regulation of melatonin on inflammasome activation, we pretreated adipocytes with LPS and examined the key inflammasome activity. As expected, LPS treatment stimulated the upregulation of NLRP3, ASC, and Caspase1 and also increased the mRNA level of GSDMD (Figure 2A). On the contrary, cells treated with melatonin showed the opposite results (Figure 2A). Melatonin can also effectively block LPS-induced IL-1β release (Figure 2B). We next asked whether melatonin affected ASC on protein level. Immunofluorescence stain indicated that ASC protein level was elevated with LPS treatment and decreased when incubated with melatonin (Figure 2C). In addition, melatonin markedly inhibited LPS-induced LDH release, and along with the reduction in Caspase1 and Caspase3 protein contents, indicating the negative role of melatonin on cell death (Figure 2D-F).

3.3 | Melatonin alleviates LPS-induced pyroptosis in adipocytes
To find the distinct role of melatonin in the regulation of cell death, we first used Z-DEVD-FMK, the specific inhibitor of Caspase3, to block cell apoptosis. Figure 3A shows Caspase3 was effectively inhibited in cells pretreated with LPS and Z-DEVD-FMK, and melatonin further reduced the protein level of Caspase3. Z-DEVD-FMK had no effect on Caspase1 (Figure 3B). In addition, melatonin can still reduce LPS-induced Caspase1 elevation with Z-DEVD-FMK treatment (Figure 3B). Similarly, melatonin decreased LPS-induced LDH release and the addition of Z-DEVD-FMK did not disturb this process (Figure 3C). We also performed the TUNEL stain measurement to see how melatonin affected cell death. Interestingly, we obtained the consistent result as in Figure 3A-C; melatonin significantly reduced LPS-induced cell death, while Caspase3 played no role in LPS-mediated cell death (Figure 3D). These results triggered us to hypothesize that melatonin attenuated LPS-induced pyroptosis but not apoptosis in adipocytes. We further examined the NLRP3 and ASC inflammasome and the expression level of GSDMD. As expected, melatonin markedly downregulated the mRNA levels of NLRP3, ASC, and GSDMD; and when inhibited Caspase3 activity, melatonin still reduced the levels of inflammasome and GSDMD (Figure 3E). IL-1β maturation and secretion is another major response of canonical inflammasome activation. We observed that contrast to control group, melatonin treatment group had little IL-1β...
secretion into the supernatant, and the inhibition of Caspase3 had no effects on IL-1β secretion (Figure 3F). Thus, we conclude melatonin alleviates LPS-induced pyroptosis.

3.4 Reduction in GSDMD is essential for melatonin-alleviated pyroptosis

We further examine the regulation of melatonin in inflammasome-triggered pyroptosis. Melatonin decreased the mRNA level of *GSDMD*, and the deficiency of *GSDMD* further strengthens the reduction in *GSDMD* (Figure 4A). Knockdown of GSDMD blocked LPS-induced pyroptosis of adipocytes upon the reduction in *NLRP3* inflammasome and *Caspase1* expression (Figure 4B). Melatonin addition further decreased pyroptosis (Figure 4B). LPS-induced IL-1β release was also inhibited after GSDMD knocked down, and melatonin strengthens the reduction in IL-1β release (Figure 4C). The LPS-induced LDH release was significantly reduced in the si-GSDMD group and melatonin-treated group (Figure 4D). Cotreatment of si-GSDMD and melatonin slightly affected the reduced pattern of LDH (Figure 4D). Compared with LPS treatment group, the deficiency of GSDMD reduced membrane pore formation, suggesting the reduction in pyroptosis (Figure 4E). We got the similar results in melatonin treatment group, and LPS-triggered pyroptosis was further decreased in si-GSDMD and melatonin.
We then pretreated cells with Z-DEVD-FMK and performed the TUNEL stain measurement, which confirmed that melatonin attenuated pyroptosis through the regulation of GSDMD (Figure 4F). Together, we confirmed that melatonin alleviated LPS-induced pyroptosis, and the deficiency of GSDMD promoted the this function.

3.5 Melatonin inhibits adipocyte pyroptosis by reducing NF-κB signal

As indicated in Figure 1, NF-κB signals were enriched in the GO signal pathway analysis, we then asked whether NF-κB signals influenced melatonin function. Firstly, with the
stimulation of LPS we determined the mRNA and protein levels of melatonin receptors after incubation with melatonin. Figure 5A,B shows both MT1 and MT2 were elevated with melatonin treatment, while LPS had the opposite effects (Figure 5A,B). Melatonin-alone treatment significantly blocked NF-κB signal activity, both the protein level of NF-κB in the cytoplasm and p65 in the nucleus (Figure 5C). And in the cells of LPS-induced pyroptosis, melatonin still reduced the levels of NF-κB and p65 (Figure 5C). Melatonin treatment decreased the GSDMD mRNA level, which was elevated by LPS (Figure 5D). In addition, phosphorylation level of p65 was also decreased compared with that in LPS-alone treatment group (Figure 5E). Consistently, the translocation of NF-κB to the nucleus in adipocytes was analyzed using immunofluorescence staining, and the images revealed that NF-κB p65 was normally sequestered in cytoplasm and that both cytoplasm and nuclear accumulation of p65 were markedly reduced following melatonin treatment (Figure 5F).
LPS-induced pyroptosis upregulated the protein levels of GSDMD and ASC, and melatonin played the opposite role (Figure 5G). LPS-induced pyroptosis increased the phosphorylation of NF-κB, and along with the elevation of NLRP3 and Cleaved-Caspase1; and melatonin treatment reversed the expression pattern of these indicators (Figure 5G). Interestingly, our data showed LPS-induced pyroptosis enhanced the level of IRF7, which we did not consider before (Figure 5G).

Cluster of transcription factors of multiple inflammation genes were altered as shown in the RNA-seq data (Figure 1). To analyze the underlying mechanisms of melatonin on pyroptosis, we considered the transcription-level control. Our results showed GSDMD promoter contained three potential binding domains of NF-κB (Figure 6A), and data demonstrated the binding sites, 720 bp-250 bp and 250 bp-100 bp upstream of the initiation site of GSDMD, functioned (Figure 6A,B). Mutation of either one of the two binding sites plays no role in the inhibition of GSDMD transcription, but in case of mutant two of the binding sites, the transcription of GSDMD was blocked (Figure 6C). This confirmed both the two binding sites functioned and NF-κB was a positive transcription regulator of GSDMD. Expression of NF-κB in adipocytes also increased the expression of GSDMD, while cotreatment of NF-κB and melatonin blocked the elevation of GSDMD (Figure 6D). Compared with the increasing LDH release and IL-1β release in NF-κB forced expression group, melatonin plus NF-κB reduced both the LDH release and IL-1β release (Figure 6E).

3.6 IRF7 forms a complex with GSDMD

The decreased protein level of IRF7 caused by melatonin led us to further hypothesize that melatonin regulated LPS-induced pyroptosis by direct modification, through a physical interaction. Based on the bioinformatics analysis and previous data sheet, our data showed IRF7 interacted with GSDMD (Figure 7A). Then by protein–protein measurement, our data indicated IRF7 strongly interacted with GSDMD in HEK293T cells (Figure 7B).

Next, we infected adipocytes with pAd-IRF7 (or si-IRF7) alone or with melatonin and analysis the level of Caspase1 and IL-1β release. IRF7 overexpression significantly increased Caspase1 mRNA level, but melatonin addition attenuated the elevation of Caspase1 (Figure 7C). Similarly, IRF7 stimulated IL-1β release, but melatonin played on the contrary (Figure 7D). Thus, these data
suggested IRF7 and GSDMD directly bind, and melatonin regulated GSDMD-mediated pyroptosis via the regulation of IRF7 in adipocytes.

3.7 Melatonin alleviates LPS-induced pyroptosis in mice adipose tissue

To test the effects of melatonin on pyroptosis in vivo, we used a model of LPS-induced pyroptosis. LPS treatment markedly increased serum IL-1β level, and melatonin injection had the opposite effect as the in vitro experiments (Figure 8A). Then, further inflammasome detection demonstrated melatonin downregulated NLRP3 and ASC elevation, and along with the reduction in Caspase1 and GSDMD (Figure 8B). GSDMD membrane pore was also reduced after melatonin treatment in LPS-induced pyroptosis (Figure 8C). Thus, we verified melatonin function in LPS-induced pyroptosis in vivo.
FIGURE 6 NF-κB positively regulated the transcription of GSDMD. A, Dual-luciferase reporter assay of GSDMD and NF-κB. HEK293 cells were transfected with PGL3-basic or PGL3-GSDMD plasmids, and pc-NF-κB plasmid (n=3). B, ChIP analysis between GSDMD and NF-κB (n=3). C, The strategy for generating mutant GSDMD promoter-driven luciferase reporters with mutated bases shown in red (n=3). D, mRNA level of GSDMD of adipocytes pretreated with pc-NF-κB and incubated with melatonin (MT) or not (n=6). E, LDH release was measured by ELISA of adipocytes pretreated with pc-NF-κB and incubated with melatonin (MT) or not (n=3). F, IL-1β production in the culture medium was detected by ELISA (n=3). pc-NF-κB: the overexpression plasmid of NF-κB, GSDMD720-LUC-S1: the mutant GSDMD promoter plasmid which turns the C base to T base, GSDMD720-LUC-S2: the mutant GSDMD promoter plasmid which turns T base to G base, GSDMD720-LUC-S1, S2: the mutant GSDMD promoter plasmid contained two mutant sites. Values are means±SEM. *P<.05 compared with the control group, #P<.05 compared with the MT group.
3.8 | Melatonin reduces pyroptosis of adipose tissue in obese mice

We then studied the function of melatonin in HFD-induced pyroptosis of diet-induced obese mice. The HFD caused the pronounced increase in the mRNA and protein levels of NLRP3, ASC, IL-6, and IL-1β compared with chow diet-fed mice, whereas melatonin injection reduced these genes expressions (Figure 9A). In addition, serum IL-1β was increased in obese mice, and melatonin injection also inhibited the release of IL-1β (Figure 9B). We then measured cell death level. As expected, HFD triggered adipose pyroptosis indicated by the elevation of Caspase1 and GSDMD, but did not induce adipose apoptosis, whereas melatonin injection reduced all these genes expressions (Figure 9C). Consistently, melatonin treatment reduced the protein levels of GSDMD and Cleaved-Caspase1 and 3 (Figure 9C). Next, we used the cotreatment of si-GSDMD and melatonin in obese mice to see whether melatonin function via GSDMD in vivo. Knockdown of GSDMD enhanced the effects of melatonin on pyroptosis (Figure 9D). And the deficiency of GSDMD significantly increased the mRNA level of Caspase3 and the protein level of Cleaved-Caspase3, but melatonin injection had the opposite effect (Figure 9D). Together, melatonin reduced HFD-induced pyroptosis through GSDMD in obese mice adipose tissue.

4 | DISCUSSION

There exists a substantial amount of evidence supporting that melatonin exerts its anti-inflammatory effects by regulating a variety of cellular pathways. Inflammasomes are a group of protein complexes that recognize a diverse set of inflammation-inducing stimuli and control the production of important pro-inflammatory cytokines. Although studies report that melatonin inhibits the activation of inflammasome...
pathway in peripheral tissue such as liver and lung, the effects of melatonin on inflammasome of adipose tissue are still not determined.28,41 In this study, we demonstrated that exogenous melatonin ameliorated inflammation of adipose tissue. Moreover, melatonin also attenuated the activation of NLRP3 inflammasome in obese or LPS-induced mice models. Thus, our data indicated that melatonin is involved in regulating inflammasome of adipocytes upon the inflammatory status.

Among the many known inflammasome complexes, the NLR pyrin domain containing 3 (NLRP3) inflammasome is best characterized and consists of NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and pro-Caspase1.42–45 There exists a substantial amount of evidence supporting that melatonin exerts its anti-inflammatory effects by inhibiting NLRP3 inflammasome.27,46,47 To estimate the effects of melatonin on inflammasome pathway of adipocytes, we investigated the core inflammation and immune genes expression profile in adipose tissue. We found that melatonin inhibited the expression of inflammasome genes including NLRP3, ASC, Caspase1, and IL-1β. Moreover, the NF-κB signal pathway which was correlated with inflammatory response is significantly enriched by the GO analysis. Studies have identified that NF-κB could bind to TLR4 and NLRP3 promoter region, suggesting the transcriptional regulation of NF-κB on TLR4 and NLRP3 and its downstream targets.48,49 Furthermore, melatonin could suppress NF-κB-dependent pro-inflammatory mediators in various cell types.50–52 From these findings, we surmise that melatonin may participate in the regulation of NLRP3 inflammasome by modulating the NF-κB signal in adipocytes.

This study pointed out a significant correlation between melatonin and NF-κB signal, which had been reported.53,54 The NF-κB signal is a cytosolic sensor which activates and promotes its nuclear translocation and DNA binding.13,46 García et al. report that melatonin inhibits NF-κB/NLRP3 activation by regulating the nuclear RORα pathways.55 Consistently, we demonstrated that melatonin was potent to reduce the phosphorylation of NF-κB and subsequently inhibit the NLRP3 pathway in downstream. Furthermore, melatonin also promoted the translocation of NF-κB/p65 from the nuclei to cytoplasm. These findings are consistent with other studies that NF-κB signal is central to melatonin performing the anti-inflammatory function.53

Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a Caspase1-dependent form of
FIGURE 9 Melatonin reduces pyroptosis of adipose tissue in obese mice. A, (Left panel) Gene expression of NLRP3, ASC, IL-6, and IL-1β in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or not (n=6). (Right panel) Protein levels of NLRP3, ASC, IL-6, and IL-1β in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or not (n=6). B, Serum IL-1β level of high-fat-diet (HFD)-fed mice treated with melatonin or not (n=6). C, (left panel) mRNA level of Caspase1, GSDMD, and Caspase3 in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or not (n=6). (Right panel) Protein levels of Cleaved-Caspase1, Caspase1, GSDMD, Cleaved-Caspase3, and Caspase1 in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or not (n=6). D, (Left panel) mRNA level of GSDMD, Caspase1, and Caspase3 in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or si-GSDMD (n=6). (Right panel) Protein levels of Cleaved-Caspase1, Caspase1, GSDMD, Cleaved-Caspase3, and Caspase1 in the adipose tissue of high-fat-diet (HFD)-fed mice treated with melatonin or si-GSDMD (n=6). si-GSDMD: interference lentivirus vector of GSDMD. Values are means±SEM. *P<.05 compared with the control group, #P<.05 compared with the HFD group

FIGURE 10 Melatonin inhibits inflammasome-induced pyroptosis through adipocytes. Melatonin blunts LPS-induced NLRP3 inflammasome activation and inhibits adipocyte pyroptosis by reducing NF-κB signal in adipocytes. IRF7 and GSDMD directly bind, and melatonin regulated GSDMD-mediated pyroptosis via the regulation of IRF7 in adipocytes. Green arrows: the classical inflammasome pathway that had been studied previously. Red arrows: the new GSDMD signal pathway that we discovered in our study.
regulated cell death. Pyroptosis is characterized by an early breach of the plasma membrane integrity, which results in extracellular spilling of the intracellular contents such as pro-inflammatory cytokines. In this study, we preliminarily determined that melatonin reduced IL-1β release and attenuated pyroptosis of adipocyte. Although it is believed IL-1β production depends on the Caspase1 activity, Maelfait et al. have shown recombinant Caspase8 was able to cleave pro-IL-1β in vitro at exactly the same site as Caspase1. However, our results showed melatonin reduced Caspase8 activity (Fig. S1B), and were consistent with previous studies that melatonin inhibited Caspase8 activity mainly in the cell death process. Recent studies determine that GSDMD is the essential mediator of pyroptosis and a candidate for pyroptotic pore formation. So we assumed that GSDMD was essential for the inhibitory role of melatonin on pyroptosis of adipocytes. In our study, we showed that melatonin decreased LPS-induced GSDMD augmentation, and along with the reduction in ASC foci formation. Notably, we are the first to demonstrate that NF-κB elevates GSDMD transcription by binding to two proximal binding sites in upstream of GSDMD promoter region. In addition, further analysis suggested that GSDMD interacted with IRF7. Although the molecular mechanism of complex formation remains elusive, we suspect that it is similar to the interaction of protein phosphatase 1 (PP1)/IRF7 by protein phosphorylation and this needs further study. It is noticed that melatonin also inhibited the mRNA level of caspase3 in adipocytes. In this study, we used Z-DVED-FMK, a specific inhibitor of Caspase3, to exclude the negative influences of apoptosis on adipocytes. However, the effects of melatonin on apoptosis of adipocyte will require further investigation. Moreover, melatonin exerts many of its physiological effects on adipose tissue not only by the action of sympathetic nervous system and its receptors in adipocyte, but also through the receptor-independent actions via its direct free radical scavenging. Although we determined that melatonin alleviated pyroptosis by activating its receptor MT1 and MT2, the precise mechanism for inhibition of pyroptosis by melatonin needs to be further studied.

In summary, our present study demonstrates that melatonin inhibits inflammasome-induced pyroptosis of adipocytes. Moreover, NF-κB/GSDMD signal is essential for melatonin inhibiting NLRP3 inflammasome formation and inflammatory cytokines release in adipocytes pyroptosis (Figure 10). Thus, our results indicate that melatonin has potential as anti-obesity agent to reverse obesity-related systemic inflammation.

ACKNOWLEDGEMENTS
This work was supported by the grants from the Major National Scientific Research Projects (2015CB943102) and the National Nature Science Foundation of China (31572365).

CONFLICT OF INTEREST
The authors declare that there is no duality of interest associated with this manuscript.

AUTHOR CONTRIBUTIONS
All the authors contributed to this manuscript. Z.L., L.G., and C.S. planned for experiments; all the authors performed experiments; Z.L., Y.X. and D.L. analyzed data; Q.R., S.W., and Y.X. contributed reagents or other essential materials; L.G. and Z.L. wrote the paper.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Liu Z, Gan L, Xu Y, et al. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. *J Pineal Res.* 2017;63:e12414. https://doi.org/10.1111/jpi.12414